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ABSTRACT OF THE DISSERTATION

Semantic transfer with deep neural networks

by

Mandar Dixit

Doctor of Philosophy in Electrical Engineering

(Intelligent Systems, Robotics and Control)

University of California, San Diego, 2017

Professor Nuno Vasconcelos, Chair

Visual recognition is a problem of significant interest in computer vision.

The current solution to this problem involves training a very deep neural network

using a dataset with millions of images. Despite the recent success of this approach

on classical problems like object recognition, it seems impractical to train a large

scale neural network for every new vision task. Collecting and correctly labeling

a large amount of images is a big project in itself. The process of training a deep

network is also fraught with excessive trial and error and may require many weeks

with relatively modest hardware infrastructure. Alternatively one could leverage

the information already stored in a trained network for several other visual tasks

using transfer learning .

In this work we consider two novel scenarios of visual learning where

knowledge transfer is affected from off-the-shelf convolutional neural networks

(CNNs). In the first case we propose a holistic scene representation derived with

the help of pre-trained object recognition neural nets. The object CNNs are used

to generate a bag of semantics (BoS) description of a scene, which accurately iden-

tifies object occurrences (semantics) in image regions. The BoS of an image is,

then, summarized into a fixed length vector with the help of the sophisticated

Fisher vector embedding from the classical vision literature. The high selectivity

of object CNNs and the natural invariance of their semantic scores facilitate the
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transfer of knowledge for holitistic scene level reasoning. Embedding the CNN

semantics, however, is shown to be a difficult problem. Semantics are probability

multinomials that reside in a highly non-Euclidean simplex. The difficulty of mod-

eling in this space is shown to be a bottle-neck to implementing a discriminative

Fisher vector embedding. This problem is overcome by reversing the probability

mapping of CNNs with a natural parameter transformation. In the natural pa-

rameter space, the object CNN semantics are efficiently combined with a Fisher

vector embedding and used for scene level inference. The resulting semantic Fisher

vector achieves state-of-the-art scene classification indicating the benefits of BoS

based object-to-scene transfer.

To improve the efficacy of object-to-scene transfer, we propose an ex-

tension of the Fisher vector embedding. Traditionally, this is implemented as a

natural gradient of Gaussian mixture models (GMMs) with diagonal covariance.

A significant amount of information is lost due to the inability of these models to

capture covariance information. A mixture of Factor analyzers (MFAs) are used

instead to allow efficient modeling of a potentially non-linear data distribution in

the semantic manifold. The Fisher vectors derived using MFAs are shown to im-

prove substantially over the GMM based embedding of object CNN semantics. The

improved transfer-based semantic Fisher vectors are shown to outperform even the

CNNs trained on large scale scene datasets.

Next we consider a special case of transfer learning, known as few-shot

learning, where the training images available for the new task are very few in

number (typically less than 10). Extreme scarcity of data points prevents learning

a generalize-able model even in the rich feature space of pre-trained CNNs. We

present a novel approach of attribute guided data augmentation to solve this prob-

lem. Using an auxiliary dataset of object images labeled with 3D depth and pose,

we learn trajectories of variations along these attributes . To the training examples

in a few-shot dataset, we transfer these learned attribute trajectories and generate

synthetic data points. Along with the original few-shot examples, the additional

xix



synthesized data can also be used for the target task. The proposed guided data

augmentation strategy is shown to improve both few-shot object recognition and

scene recognition performance.
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Introduction
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I.A Visual Recognition

Ability to recognize visual semantics such as objects, people and stuff [1]

in scenes is critical for any autonomous intelligent system, e.g. a self driving

car or a self navigating robot. The development of visual recognition systems,

therefore, receives a significant amount of attention in computer vision commu-

nity. Earlier proposals of visual recognition, relied heavily on carefully designed

feature extractors that summarized low-level edge or texture information within

images [56, 15, 2]. Edge based descriptors were extracted from image regions and

often subject to non-linear encodings [14, 90, 61] and subsequent pooling to gen-

erate a reasonably invariant image representation. This representation was used

with a discriminative classifier to perform various tasks such as scene classifica-

tion, object recognition and object detection with a reasonable degree of success

[48, 8, 62, 71, 23, 15]. Low-level edge and texture features, however, have a lim-

ited discriminative power as well as invariance. Templates of gradient orientations

are largely unable to detect and describe meaningful semantics such as objects or

object-parts that may be related to the high-level visual tasks of interest. Features

such as SIFT and HoG, therefore, present a significant bottleneck for the visual

recognition systems that rely on them.

An alternative to feature design, was the technique of visual feature learn-

ing or deep learning , where a sequential hierarchy of filters or templates were

learned end-to-end specifically to optimize the performance on a given high-level

task [49]. The filter units in these deep networks were highly non-linear and learned

with strong supervision using the technique called back-propagation. Recently, due

to the availability of large scale labeled datasets like ImageNet [17], deep neural

networks have achieved major breakthroughs in visual recognition. Krizhevsky et.

al. [44] were able to successfully train a deep convolutional neural network (CNN)

using millions of images from ImageNet and achieve remarkable results on object

recognition. Simonyan et. al. [75] reduced their error by more than half, with the
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Figure I.1 a) depicts an example of Across dataset transfer, b) depicts an example

of Across domain transfer.

help of a CNN with an even deeper architecture. More recently, He et. al. [35]

have claimed recognition accuracies higher than those of human experts on object

recognition using a CNN that is hundreds of layers deep.

The successes of deep learning seem to have rendered the feature design

frameworks obsolete. Today the best approach to build an accurate visual recog-

nition system is to i) collect millions of labeled images, and ii) train a CNN that

is deep enough. Given the large number of possible recognition tasks, using this

recipe for each one of them seems unfeasible. Collecting datasets with tens of

millions of images and having them labeled using experts is a big project in itself.

The configuration of a deep neural network may also require extensive train-and-

error and the training may require months to finish on normal hardware. Instead
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of training a CNN for each new task, therefore, it may be worthwhile to develop

techniques of knowledge transfer from the CNNs that are already trained for other

tasks.

I.B Transfer Learning

The remarkable performance of deep CNNs can be attributed to a high

semantic selectivity exhibited by their units. For instance filters in the higher

layers of an object recognition CNNs are found to detect relevant semantics such

as faces and object parts [92]. The feature responses of such CNNs, therefore, are

clearly more discriminative than edge-based histograms, and, at the same time,

generic enough to be used in other vision tasks.

Many recent works have have leveraged the publicly available, ImageNet

trained, object recognition CNNs for other related tasks such as object detec-

tion [30, 29, 69], fine-grained recognition [52] and object localization [94] with rea-

sonable success. Since these proposals affect knowledge transfer within the same

visual domain (of objects) but across different datasets, we refer to their frame-

work as across-dataset transfer. An example of this is depicted in fig Figure I.1

a) where the transfer occurs between ImageNet object recognition and MS-COCO

object detection. Across dataset transfers are achieved by gently adapting the

ImageNet CNN on the new dataset using a modified loss and a few iterations

of back-propagation. This technique is commonly refered to as finetuning in the

recent literature [30]. Achieving knowledge transfer across dissimilar domains,

however, is not as straightforward. Consider for example, the case depicted in

fig Figure I.1 b) where a transfer is desired between object recognition CNNs and

holistic scene level inference. Most scenes are not defined by presence or absence of

one object but by co-occurrence of multiple objects in the field of view. To achieve

across domain transfer in these circumstances, we need the CNN to identify ob-

jects and an additional embedding to model their contextual co-occurrence. This
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embedding is not directly available from any ImageNet trained CNN and needs to

be learned on the limited scene dataset that is available for transfer.

Additionally the efficacy of any transfer learning method also depends on

the cardinality of the new data set available to learn, often called the target dataset.

When the available data points per class is very few, the problem is referred to as

that of few-shot learning. Few-shot learning is not easy even in the regime of deep

neural networks. This is because one cannot finetune a large network, to a handful

of examples, without overfitting. The only way out therefore, is to either collect

more data or learn to generate synthetic examples that can be used to augment

the target set.

I.C Contributions

In this thesis we consider two important cases of transfer learning. First is

the problem of across-domain transfer learning, where an object recognition CNN

is used to transfer knowledge to the domain of scenes. For this we design a bag-

of-semantics (BoS) representation of scenes generated by the object recognition

network. We design and test several embeddings of the BoS representation that

summarize the contextual interactions of objects in scenes. The second problem

we try to solve is that of one-shot or few-shot transfer. Specifically, we propose

a method to augment a dataset of very few examples using synthetic samples

generated by a network. This alleviates, to some extent, the issues of transfer in

severe data constraints.

I.C.1 Object-to-Scene Semantic Transfer

Scenes are often described as collection of objects and stuff [1]. An object

based CNN, therefore, can be used to identify the semantics present in a scene.

In our work we propose to describe a scene image, on similar lines, with a bag-

of-semantics (BoS) representation generated by a pre-trained object recognition
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CNN. A BoS consists of an orderless collection of object probability multinomials

generated by the CNN from local regions or patches of the scene. It is common

practice in vision, to summarize such representations into a fixed length image rep-

resentation typically using a non-linear embedding [90, 8, 62]. The most effective

embedding in classical visual recognition literature is known as the Fisher vector

(FV) [37, 62]. Although an FV is known to work quite well for many low-level fea-

tures, with CNN generated probabilities, we show that it performs poorly. This is

primarily due to the non-Euclidean nature of the space of probability vectors which

makes it difficult to design an FV that generalizes well. We show that this problem

can be alleviated by simply reversing the probability mapping implemented by the

object classifiers and working with the natural parameter form of multinomials.

For discriminative classifiers such as a CNN, a natural parameter transformation

can be easily achieved by simply dropping the final softmax layer that produces

probabilities. In the Euclidean space of natural parameters, we shown that a FV

can be designed very easily using standard Fisher recipe. This representation,

when used with a simple linear classifier, forms a conduit for transfer between

object and scene domains. For the task of transfer based scene classification, it is

shown to achieve very competitive results using relatively few scene images.

I.C.2 Semantic Covariance Modeling

While a classical FV embedding learned on a natural parameter form of

object semantics produces a strong enough scene classifier, we show that it can

be made even more accurate using an FV tailored for high dimensional data. The

standard FV [62] derives from a Gaussian mixture model (GMM) that assumes

a diagonal covariance per component. We argue that this approach is inefficient

for the space of CNN features and that it would be better to use a GMM that

is capable of modeling local covariances of the data manifold. Learning full co-

variance GMMs is impractical in large spaces due to the lack of enough data to

estimate the parameters. Therefore, we propose a model that approximates the
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data distribution in several local low-dimensional linear sub-spaces. This model

known as a mixture of factor analyzers (MFA) model learns a collection of local

Gaussians with approximate covariance structure that cover the data distribution

more efficiently compared to a variance-GMM. We derive a FV embedding for

the MFA model and use it to encode our natural parameter BoS for transfer based

scene classification. The ability to model covariance within an MFA, results in sub-

stantial improvements in the final scene classification. The transfer based MFA

FV scene representation, is also shown to be better than a scene classifier trained

directly from millions of labeled scene images. Upon combination with the scene

CNN, the MFA-FS is shown to improve the performance further by a non-trivial

margin.

I.C.3 Attribute Guided Data augmentation

Transfer learning becomes challenging especially when the amount of new

data available to learn is very limited. Under extreme circumstances, this could be

as little as 1-10 examples per class. We propose a solution to this so called few-shot

transfer learning problem. Generally when a classifier has little data to train from,

many works resort to cropping, flipping, rotating images to simulate the presence

of adequate data. This is however, not the same as adding new information and

the method seldom results in stable improvements. In our work we propose to

generate non-trivial variations of available data points by attempting to modify

their attributes (properties). We try to learn the trajectories of 3D pose and depth

attributes of object images using a small auxiliary dataset that provides such in-

formation. In a one-shot or few-shot transfer scenario, then, for each available

image, we generate its representation using an object CNN and regress it along

the learned trajectories of poses and depths, thereby hallucinating changes in these

properties and at the same time generating new synthetic features. The synthetic

features correspond to the objects in the image changing their pose or depth by

a specified amount. The transfer dataset with very few images is thus augmented

7



with the additional samples generated by simulating attribute (pose/depth) varia-

tion. We show that the presence of additional examples improve the performance

of one-shot or few-shot transfer based object as well as scene recognition. Since,

the data augmentation is achieved using attributes as a supervisory signal, we

refer to it as attribute guided augmentation. Alternatively, the data is generated

by transferring a learned trajectory of variations in pose/depth, to the few-shot

examples. Therefore, the proposed method can also be called attribute trajectory

transfer based augmentation.

I.D Organization of the thesis

The organization of this thesis is as follows. In Chapter II we first re-

view the existing bag-of-features (BoF) approach for scene classification. We then

introduce the BoS image representation obtained using ImageNet trained CNNs.

The design of basic FV embeddings for the ImageNet BoS is discussed in the rest

of the chapter. In Chapter III we show that revisit the classical Fisher vector and

show that it can be derived conveniently using the EM algorithm. We then intro-

duce the Mixture of factor analyzers (MFA) model that can model covariances in

high dimensional spaces unlike a variance GMM often preferred in FV literature.

We derive the Fisher embedding using EM for MFA model and evaluate it for

BoS based scene classification. In Chapter IV, we describe a system to generate

synthetic data given very few examples of real data in a transfer scenario. This is

shown to be helpful in one-shot and few-shot recognition scenarios. Final summary

of the work and conclusions are presented in Chapter V.
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Chapter II
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II.A Scene Classification

Natural scene classification is a challenging problem for computer vision,

since most scenes are collections of entities (e.g. objects) organized in a highly

variable layout. This high variability in appearance has made flexible visual repre-

sentations quite popular for this problem. Many works have proposed to represent

scene images as orderless collections, or “bags,” of locally extracted visual fea-

tures, such as SIFT or HoG [56, 15]. This is known as the bag-of-features (BoF)

representation. For the purpose of classification, these features are pooled into an

invariant image representation known as the Fisher vector (FV) [37, 62], which is

then used for discriminant learning. Until very recently, bag-of-SIFT FV achieved

state-of-the-art results for scene classification [71].

Recently, there has been much excitement about alternative image rep-

resentations, learned with convolutional neural networks (CNNs) [49], which have

demonstrated impressive results on large scale object recognition [44]. This has

prompted many researchers to extend CNNs to problems such as action recogni-

tion [41], object localization [30], scene classification [31, 95] and domain adapta-

tion [20]. Current multi-layer CNNs can be decomposed into a first stage of con-

volutional layers, a second fully-connected stage, and a final classification stage.

The convolutional layers perform pixel wise transformations, followed by localized

pooling, and can be thought of as extractors of visual features. Hence, the convo-

lutional layer outputs are a BoF representation. The fully connected layers then

map these features into a vector amenable to linear classification. This is the CNN

analog of a Fisher vector mapping.

Beyond SIFT Fisher vectors and CNN layers, there exists a different class

of image mappings known as semantic representations . These mappings require

vectors of classifier outputs, or semantic descriptors, extracted from an image. Sev-

eral authors have argued for the potential of such representations [87, 65, 79, 46, 47,

5, 50]. For example, semantic representations have been used to describe objects
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by their attributes [47], represent scenes as collections of objects [50] and capture

contextual relations between classes [66]. For some visual tasks, such as hashing

or large scale retrieval, a global semantic descriptor is usually preferred [83, 6].

Proposals for scene classification, on the other hand, tend to rely on a collection of

locally extracted semantic image descriptors, which we refer to as bag of seman-

tics (BoS) [79, 46, 50]. While a BoS based scene representation has outperformed

low-dimensional BoF representations [46], it is usually less effective than the high

dimensional BoF-FV. This is due to the fact that, 1) local or patch-based semantic

features can be very noisy, and 2) it is harder to combine them into a global image

representation, akin to the Fisher vector.

In this work, we argue that highly accurate classifiers, such as the Ima-

geNET trained CNN of [44] eliminate the first problem. We obtain a BoS image

representation using this network by extracting semantic descriptors (object class

posterior probability vectors) from local image patches. We then consider the de-

sign of a semantic Fisher vector , which is an extension of the standard Fisher

vector to this BoS. We show that this is difficult to implement directly on the

space of probability vectors, because of its non-Euclidean nature. On the other

hand, if semantic descriptors from an image are seen as parameters of a multino-

mial distribution and subsequently mapped into their natural parameter space, a

robust semantic FV can be obtained simply using the standard Gaussian mixture

based encoding of the transformed descriptors [62]. In case of a CNN, this natural

parameter mapping is shown equivalent to the inverse of its soft-max function. It

follows that the semantic FV can be implemented as a classic (Gaussian Mixture)

FV of pre-softmax CNN outputs.

The semantic FV, represents a strong embedding of features that are

fairly abstract in nature. Due to the invariance of this representation, which is a

direct result of semantic abstraction, it is shown to outperform Fisher vectors of

lower layer CNN features [31] as well as a classifier obtained by fine-tuning the

CNN itself [30]. Finally, since object semantics are used to produce our image
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Figure II.1 Bag of features (BoF). A preliminary feature mapping F , maps an

image into a space X of retinotopic features. A non-linear embedding E is then

used to map this intermediate representation into a feature vector on an Euclidean

space D.

representation, it is complementary to the features of the scene classification net-

work (Places CNN) proposed in [95]. Experiments show that a simple combination

of the two descriptors, produces a state-of-the-art scene classifier on MIT Indoor

and MIT SUN benchmarks.

II.B Image representations

In this section, we briefly review BoF and BoS based image classification.

II.B.1 Bag of Features

Both the SIFT-FV classifier and the CNN are special cases of the general

architecture in Figure II.A, commonly known as the bag of features (BoF) classifier.

For an image I(l), where l denotes spatial location, it defines an initial mapping

F into a set of retinotopic feature maps fk(l). These maps preserve the spatial

topology of the image. Common examples of mapping F include dense SIFT,

HoG and the convolutional layers of a CNN. The BoF produced by F is subject

to a highly nonlinear embedding E into a high dimensional feature space D. This

is a space with Euclidean structure, where a linear classifier C suffices for good
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performance.

It could be argued that this architecture is likely to always be needed for

scene classification. The feature mapping F can be seen as a (potentially non-

linear) local convolution of the input image with filters, such as edge detectors

or object parts. This enables the classifier to be highly selective, e.g. distinguish

pedestrians from cars. However, due to its retinotopic nature, the outputs of F are

sensitive to variations in scene layout. The embedding E into the non-retinotopic

space D is, therefore, necessary for invariance to such changes. Also, the space

D must have a Euclidean structure to support classification with a linear decision

boundary.

CNN based classifiers have recently achieved spectacular results on the

ImageNET object recognition challenge [44, 73]. Their success has encouraged

many researchers to use the features and embeddings learned by these networks

for scene classification, replacing the traditional SIFT-FV based architecture [20,

74, 31, 54]. It appears undisputable that their retinotopic mapping F , which is

strongly non-linear (multiple iterations of pooling and rectification) and discrim-

inant in nature (due to back-propagation) [92], has a degree of selectivity that

cannot be matched by shallower mappings, such as SIFT. Less clear, however, is

the advantage of using embeddings learned on ImageNET in place of the Fisher

vectors for scene representation. As scene images exhibit a greater degree of intra

class variation compared to object images, the ability to trade-off selectivity with

invariance is critical for scene classification. While Fisher vectors derived using

mixture based encoding are invariant by design, a CNN embedding learned from

almost centered object images is unlikely to cope with the variability in scenes.

II.B.2 Bag of Semantics

Semantic representations are an alternative to the architecture of Fig-

ure II.A. They simply map each image into a set of classifier outputs, using these

as features for subsequent processing. The resulting feature space S is commonly
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known as the semantic feature space. Since scene semantics vary across image

regions, scene classification requires a spatially localized semantic mapping. This

is denoted as the bag-of-semantics (BoS) representation.

As illustrated in Figure Figure II.2, the BoS is akin to the BoF, but

based on semantic descriptors. Its first step is the retinotopic maping F . However,

instead of the embedding E , this is followed by another retinotopic mapping N into

S. At each location l, N maps the BoF descriptors extracted from a neighborhood

of l into a semantic descriptor . The dimensions of this descriptor are probabilities

of occurrence of visual classes (e.g. object classes, attributes, etc.). A BoS is an

ensemble of retinotopic maps of these probabilities. An embedding E is used to

finally map the BoS features into a Euclidean space D.

While holistic semantic representations have been successful for applica-

tions like image retrieval or hashing, localized representations, such as the BoS,

have proven less effective for scene classification, for a couple of reasons. First,

the scene semantics are hard to localize. They vary from image patch to image

patch and it has been difficult to build reliable scene patch classifiers. Hence,

local semantics tend to be noisy [67, 50] and most works use a single global se-

mantic descriptor per image [83, 4, 5]. This may be good for hashing, but it is

not expressive enough for scene classification. Second, when semantics are ex-

tracted locally, the embedding E into an Euclidean space has been difficult to

implement [46]. This is because semantic descriptors are probability vectors, and

thus inhabit a very non-Euclidean space, the probability simplex, where commonly

used descriptor statistics lose their effectiveness. In our results we show that even

the sophisticated Fisher vector encoding [62], when directly implemented, has poor

performance on this space.

We argue, that the recent availability of robust classifiers such as the CNN

of [44], trained on large scale datasets, such as ImageNET [17], effectively solves

the problem of noisy semantics. This is because an ImageNET CNN is, in fact,

trained to classify objects which may occur in local regions or patches of a scene
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Figure II.2 Bag of semantics (BoS). The space X of retinotopic features is first

mapped into a retinotopic semantic space S, using a classifier of image patches.

A non-linear embedding E is then used to map this representation into a feature

vector on an Euclidean space D.

image. The problem of implementing an invariant embedding E in the semantic

space, however, remains to be solved.

II.C BoF embeddings

We first try to analyze, the suitability for scene classification, of the known

BoF embeddings, namely the Fisher vector and the fully connected layers of Ima-

geNET CNNs.

II.C.1 CNN embedding

For the CNN of [44], the mapping F consists of 5 convolutional layers.

These produce an image BoF I = {x1, x2, . . . xN}, where xi’s are referred to as

the conv5 descriptors. The descriptors are max pooled in their local neighborhood

and transformed by the embedding E . The embedding is implemented using two

fully connected network stages, each performing a linear projection, and a non-

linear ReLu transformation {W × (.)}+. The resulting outputs of layer 7, which

we denote as fc7 , are the features of space D, in Figure II.A.
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II.C.2 FV embedding

Alternatively, a FV embedding can be implemented for the BoF of conv5

descriptors. This consists of a preliminary projection into a principal component

analysis (PCA) subspace,

x = Cz + µ, (II.1)

where C is a low-dimensional PCA basis and z are the coefficients of projection of

the conv 5 descriptors x on it. z’s are assumed Gaussian mixture distributed.

z ∼
∑
k

wkN(µk, σk). (II.2)

A central component of the FV is the natural gradient with respect to parameters

(mean, variance and weights) of this model [71]. For conv5 features, we have found

that the gradient with respect to the mean [62]

GIµk =
1

N
√
wk

N∑
i=1

p(k|zi)
(
zi − µk
σk

)
(II.3)

suffices for good performance. Note that this gradient is an encoding and pool-

ing operation over the zi. It destroys the retinotopic topology of the BoF and

guarantees invariance to variations of scene layout.

II.C.3 Comparison

We compared the CNN and FV embeddings, on two popular object recog-

nition (Caltech 256 [33]) and scene classification (MIT Indoors [63]) datasets, with

the results shown in the top half of Table Table II.1. For the CNN embedding,

7th fully connected layer features were obtained with “Caffe” [40]. Following [20],

this 4096 dimensional feature vector was extracted globally from each image. It

was subsequently power normalized (square rooted), and L2 normalized, for better

performance [74]. The classifier trained with this representation is denoted “fc

7” in the table. For the FV embedding, the 256-dimensional conv5 descriptors

were PCA reduced to 200 dimensions and pooled with (II.3), using a 100-Gaussian

16



Table II.1 Comparison of the ImageNET CNN and FV embeddings on scene and

object classification tasks.
Method MIT Indoor Caltech 256

fc 7 59.5 68.26
conv5 + FV 61.43 56.37

fc7 + FV 65.1 60.97

mixture. This was followed by a square root and L2 normalization, plus a second

PCA to reduce dimensionality to 4096 and is denoted “conv5 + FV” in the table.

Both representations were used with a linear SVM classifier.

The results of this experiment highlight the strengths and limitations of

the two embeddings. While fc7 is vastly superior to the FV for object recognition

(a gain of almost 12% on Caltech), it is clearly worse for scene classification (a

loss of 2% on MIT Indoor). This suggests that, although invariant enough to

represent images containing single objects, the CNN embedding cannot cope with

the variability of the scene images. On the other hand, the mixture based encoding

mechanism of the FV is quite effective on the scene dataset.

FV over conv 5 , however, is an embedding of low-level CNN features. In

principle, an equivalent embedding of BoS features should have better performance,

since semantic descriptors have a higher level of abstraction than conv5 , and thus

exhibit greater invariance to changes in visual appearance. To some extent, the

image representation proposed by Gong et. al. [31] shows the benefits of such

invariance, albeit using an embedding of the intermediate 7th layer activations, not

the semantic descriptors at the network output. They represent a scene image

as a collection of fc7 activations extracted from local crops or patches. These

are summarized using an approximate form of (II.3), known as VLAD [39]. The

resulting embedding, denoted as “fc7 + FV” in Table Table II.1, is very effective

for scene classification1. However, since the representation does not derive from

semantic features, it is likely to be both less discriminant and less abstract than

1The results reported here are based on (II.3) and 128x128 image patches. They are slightly superior
to those of VLAD, in our experiments

17



2 4 6 8 10 12 14

2

4

6

8

10

12

14

a) bedroom scene b) “day bed”

2 4 6 8 10 12 14

2

4

6

8

10

12

14

2 4 6 8 10 12 14

2

4

6

8

10

12

14

c) “quilt, comforter” d) “window screen”

Figure II.3 Example of an imageNet based BoS. a) shows the original image of a

bedroom. The object recognition channels in ImageNet CNN related to b) “day

bed” c) “comforter” and d) “window screen” show high affinity towards relevant

local semantics of the scene

the truly semantic embedding of Figure Figure II.2. The implementation of an

effective semantic embedding, on the other hand, is not trivial. We consider this

problem in the remainder of this work.

II.D Semantic FV embedding

We start with a brief review of a BoS image representation and then

propose suitable embeddings for them.
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Figure II.4 CNN based semantic image representation. Each image patch is

mapped into an SMN π on the semantic space S, by combination of a convolutional

BoF mapping F and a secondary mapping N by the fully connected network stage.

The resulting BoS is a retinotopic representation, i.e. one SMN per image patch.

II.D.1 The BoS

Given a vocabulary V = {v1, . . . , vS} of S semantic concepts , an image I

can be described as a bag of instances from these concepts, localized within image

patches/regions. Defining an S-dimensional binary indicator vector si, such that

sir = 1 and sik = 0, k 6= r, when the ith image patch xi depicts the semantic

class r, the image can be represented as I = {s1, s2, . . . , sn}, where n is the total

number of patches. Assuming that si is sampled from a multinomial distribution

of parameter πi, the log-likelihood of image I can be expressed as,

L = log
n∏
i=1

S∏
r=1

πir
sir =

N∑
i=1

S∑
r=1

sir log πir. (II.4)
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Since the precise semantic labels si for image regions are usually not known, it is

common to rely instead on the expected log-likelihood

E[L] =
n∑
i=1

S∑
r=1

E[sir] log πir (II.5)

Using the fact that πir = E[sir] or P (r|xi), it follows that the expected image

log-likelihood is fully determined by the multinomial parameter vectors πi. This

is denoted the semantic multinomial (SMN) in [65]. They are usually computed

by 1) applying a classifier, trained on the semantics of V , to the image patches,

and 2) using the resulting posterior class probabilities as SMNs πi. The process is

illustrated in Figure Figure II.4 for a CNN classifier. Each patch is thus mapped

into the probability simplex, which is denoted the semantic space S in Figure Fig-

ure II.2. The image is finally represented by the SMN collection I = {π1, . . . , πn}.

This is the bag-of-semantics (BoS) representation.

In our implementation, we use the ImageNET classes as V and the ob-

ject recognition CNN in [44] to estimate the SMNs πi. Scoring patches of a scene

individually, to generate these SMNs, is a simple but slow approach to semantic

labeling. A faster alternative is to transform a CNN into a fully convolutional net-

work and generate a BoS with one forward pass on the scene image. This requires

changing the fully connected layers, if any, in the CNN into 1x1 convolutional lay-

ers. The receptive field of a fully convolutional CNN can be altered by reshaping

the size of the input image. E.g. if the image is of size 512x512 pixels, the fully

convolutional implementation of [44], generates SMNs from 128x128 pixel patches

that are 32 pixels apart, approximately. The high quality of semantics generated

by this classifier is apparent from fig. Figure II.3, where the recognizers related

to “bed”, “window” and “quilt” are shown to exhibit high activity in areas where

these objects appear in a bedroom scene.
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II.D.2 Evaluation

We evaluate the performance of the GMM Fisher vector as a BoS embed-

ding, for the task of scene classification. Experiments are performed on benchmark

scene datasets namely MIT Indoors [63] and MIT SUN [89]. The MIT Indoor

dataset consists of 100 images each from 67 indoor scene classes. The standard

protocol for scene classification, on this dataset, is to use 80 images per class for

training and the remaining 20 per class for testing. The MIT SUN dataset has

about 100K images from 397 indoor and outdoor scene categories. The authors of

this dataset provide randomly sampled image sets each with 50 images per class

for training as well as test. Performance, on both datasets, is reported as average

per class classification accuracy.

To generate an image BoS, we use the object recognition CNN of [44],

pre-trained on the ImageNet dataset. The network is applied to every scene image

convolutionally, generating a 1000 dimensional SMN for every 128x128 pixel re-

gion, approximately. The 1000 dimensional probability vectors (πi’s) are reduced

to 500 dimensions using PCA. A reference Gaussian mixture model θb, with 100

components, is trained using the PCA reduced SMNs xi’s from all training im-

ages. For each scene image, using its BoS, a Fisher vector is computed as shown

in (II.3). The image FVs are power normalized and L2 normalized, as per standard

procedure [62], and used to train a linear SVM for scene classification.

The GMM-FV classifier trained on imageNet semantics is denoted as

SMN-FV in Table Table II.2. Scene classification performance of the SMN-FV

is found to be very poor on both MIT Indoor and SUN datasets. The classifier

is in fact, significantly weaker compared to even a handcrafted SIFT-based FV.

The accuracy of SMN-FV is about 5 − 6% points lower than the SIFT-FV used

in [71]. It is undisputed that the mappings of a CNN, which are strongly non-

linear (multiple iterations of pooling and rectification) and discriminant (due to

back-propagation), have a degree of selectivity that cannot be matched by shal-

lower mappings, such as SIFT. The inferior performance of CNN based SMN-FV,
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Table II.2 Evaluation of different Fisher vector encoding techniques over imageNet

BoS. Fisher vectors of fully connected layer features and handcrafted SIFT are

included for reference.
Method MIT Indoor SUN

SIFT-FV 60.0 43.3
fc7-FV 65.1 48.3

SMN-FV 55.3 36.87
DMM-FV 58.8 40.86

ν(1)-FV 67.7 49.86
ν(2)-FV 68.5 49.86
ν(3)-FV 67.6 48.81

ν(4)-FV 58.95 40.6

therefore, is very surprising. Additionally, semantic (classifier) mappings of a CNN

have a higher level of abstraction compared to mappings of lower network layers.

CNN semantics therefore, exhibit greater invariance to visual appearance com-

pared to activations from pre-classification fully connected layers. The SMN-FV,

therefore, in principle, should have better performance compared to an FV em-

bedding of fully connected (fc7) features. A comparison on scene classification,

however, shows that a SMN-FV is substantially worse than a fc7-FV of similar

complexity. Both the results indicate that despite the demonstrable superiority

of ImageNet semantics, embedding them with a simple GMM-FV can adversely

impact the final performance. In order to design an FV embedding suitable for

ImageNet semantics, it is therefore, necessary to first understand the nature of the

semantic space.

II.D.3 Limitations

While GMM FVs perform reasonably well with low-level feature spaces

such as SIFT, HoG etc., their failure with ImageNet SMNs can be attributed to

a very non-Euclidean nature of the space of probability vectors. In general, the

difficulty of modeling on a data space X depends on its topology. Most machine

learning assumes vector spaces with Euclidean structure, e.g. where the natural
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measure of distance between examples xi ∈ X is a metric. This is not the case for

the probability simplex, which has a non-metric Kullback-Leibler divergence as its

natural distance measure, and makes model learning quite difficult.

To illustrate this issue we present two binary classification problems

shown in Figures Figure II.5 a) and b). In one case, the two classes are Gaus-

sian, and in the other they are Laplacian. The class-conditional distributions of

both problems are of the form P (x|y) ∝ exp{−d(x, µy)} where Y ∈ {0, 1} is the

class label and

d(x, µ) = ||x− µ||p (II.6)

with p = 1 for Laplacian and p = 2 for Gaussian data. Figures Figure II.5 a) and

b) show the iso-contours of the probability distributions under the two scenarios.

Note that both the classifiers have very different metrics.

The posterior distribution of class Y = 1 is, in both cases,

π(x) = P (y = 1|x) = σ(d(x, µ0)− d(x, µ1)) (II.7)

where σ(v) = (1 + e−v)−1 is the sigmoid function. Due to the non-linearity of the

sigmoid mapping, the projection x → (π(x), 1 − π(x)) of the samples xi into the

semantic space destroys the Euclidean structure of their original spaces X . This

is illustrated in Figure Figure II.5 c), where we show the posterior surface and the

projections π(xi) for samples xi of the Guassian classes of Figure Figure II.5 a).

On the semantic space, the shortest path between two points is not necessarily a

line. The non-linearity of the sigmoid also makes the posterior surfaces of both

classification problems very similar. The posterior surface of the Laplacian problem

in Figure Figure II.5 b) is visually indistinguishable from Figure Figure II.5 c) and

is omitted for brevity.

The example shows two very different classifiers transforming the data

into highly non-Euclidean semantic spaces that are almost indistinguishable. This

suggests that modeling directly in the space of probabilities with Gaussian Mix-

tures can be difficult in general. This is the most likely reason for the weakness of
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GMM-FVs in the semantic space of CNNs.

II.D.4 Natural parameter space

The non-Euclidean nature of a classifier’s posterior surface makes the

embedding E of Figure Figure II.2 very difficult to learn from SMNs. Note, for ex-

ample, that the PCA step in (II.1) or the subsequent Gaussian encoding described

in (II.3) make no sense for semantic space data, since the geodesics of the posterior

surface are not lines. This problem can be avoided by noting that SMNs are the

parameters of the multinomial, which is a member of the exponential family of

distributions

PS(s; π) = h(s)g(π) exp
(
ηT (π)T (s)

)
, (II.8)

where T (s) is denoted a sufficient statistic. In this family, the re-parametrization

ν = η(π), makes the (log)probability distribution linear in the sufficient statistic

PS(s; ν) = h(s)g(η−1(ν)) exp
(
νTT (s)

)
. (II.9)

This is called the natural parameterization of the distribution. Under this parametriza-

tion, the multinomial log-likelihood of an image BoS in (II.5) yields a natural

parameter vector νi = η(E{si}) for each patch xi, instead of a probability vec-

tor. When the semantics are binary, the natural parameter is obtained by a logit

transform ν = log π
1−π of SMNs. This maps the high-nonlinear semantic space of

Figure Figure II.5 c) into the linear space of Figure Figure II.5 d). Similarly, by

mapping the multinomial distribution to its natural parameter space, it is possible

to obtain a one-to-one transformation of the semantic space into a space with Eu-

clidean structure. This makes the embedding E of Figure Figure II.2 substantially

easier.

II.D.5 Natural Parameter FVs

Natural parameter transformation maps an image BoS I = {π1, . . . πn}

into the natural parameter space BoS (NP-BoS) I = {ν1, . . . νn}. The main ad-

24



vantage of the natural parameter space is its Euclidean nature, which allows the

design an embedding using the standard GMM FV machinery. For a multinomial

distribution of parameter vector π = (π1, . . . , πS) there are actually three possible

natural parametrizations

ν
(1)
k = log πk (II.10)

ν
(2)
k = log πk + C (II.11)

ν
(3)
k = log

πk
πS

(II.12)

where νk and πk are the kth entries of ν and π, respectively. The performance of

these parametrizations is likely to depend on the implementation of the semantic

classifier that generates the SMNs. For a discriminant classifier such as the CNN,

ν(2) will likely be the best parameterization. Note that, in this case, the vector

of entries πk = 1
C
eν , is a probability vector if and only if C =

∑
i e
νi . Hence,

the mapping from ν to π is the softmax transformation commonly implemented

at the CNN output. This implies that the CNN is learning how to discriminate

the data in the natural parameter space of the multinomial distribution, which

is a generalization of a natural binomial space shown in Figure Figure II.5 d).

We test this assertion in our experiments by comparing the parametrizations of

(II.10)-(II.12) for GMM-FV based scene classification.

II.D.6 Dirichlet Mixture FVs

An alternative to GMM based embedding of natural parameter features,

is the use of a Dirichlet mixture models (DMM) in the space of SMNs. A DMM is

the most popular model for multinomial probability vectors [58]. It was previously

proposed by Rasiwasia et. al. [66] to model scene class-specific distributions of

“theme” SMNs. The probability distribution function of a DMM is defined as,

P (π|{αk, wk}Kk=1) =
1

Z(αk)
e
∑

l(αkl−1) log πl . (II.13)

where αk is known as the Dirichlet parameter of the kth mixture component and

wk denotes the mixture weight. Z(αk) is a normalizing constant of the distribution
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component and has the mathematical form
γ(

∑
l αkl)∏

l γ(αkl)
, where γ(x) =

∫∞
0
xt−1e−xdx

denotes a Gamma function. Note that the sufficient statistic of a Dirichlet distri-

bution is log π. A DMM, therefore, inherently operates in the space of the natural

parameter ν(1) shown in (II.10). The log-likelihood of an image BoS I = {π1, . . . πn}

under the DMM is

L = logP ({πi}ni=1|{αk, wk}Kk=1) (II.14)

= log
n∏
i=1

K∑
k=1

wk
γ (
∑

l αkl)∏
l γ(αkl)

e
∑

l(αkl−1) log πil . (II.15)

The Fisher scores of this log-likelihood are

GIαk
=

1

n

∂L
∂αk

=
1

n

N∑
i=1

p(k|πi)

(
ψ(
∑
l

αkl)− ψ(αk) + log πi

)
(II.16)

where ψ(x) = ∂γ(x)
∂x

. Using some common assumptions in the FV literature [62],

we approximate the Fisher information F by the block diagonal matrix

Flm = E

[
−∂

2 logP (π|{αk, wk}Kk=1)

∂αkl∂αkm

]
≈ wk

(
ψ′(αkl)δ(l,m)− ψ′(

∑
l

αkl))

) (II.17)

where δ(l,m) = 1 if l = m. A DMM Fisher vector for image I is finally obtained

from (II.16) and (II.17) as F−1/2GIαk
.

II.D.7 Evaluation of NP Embeddings

We design a scene classification experiment to compare the performance

of the DMM-FV from section II.D.6 with the Gaussian Mixture FVs trained over

parameter mappings (II.10)-(II.12). The latter are denoted ν(i)-FVs based on the

NP mapping ν(i) used to learn them. The experimental protocol is the same as

described in section II.D.2. Local SMNs are extracted using the ImageNet CNN

of [44] from evenly spaced, 128x128 pixel patches of scene images from MIT Indoor
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Figure II.5 Top: Two classifiers in an Euclidean feature space X , with metrics

a) the L2 or b) L1 norms. Bottom: c) projection of a sample from a) into the

semantic space S (only P (y = 1|x) shown). The posterior surface destroys the Eu-

clidean structure of X and is very similar for the Gaussian and Laplacian samples

(Lapalacian omitted for brevity). d) natural parameter space mapping of c).

and SUN datasets. To obtain the ν(i)-FVs, the image SMNs are transformed into

the appropriate natural parameters and reduced to 500 dimensions using PCA.

Reference or background GMMs θb = {µbk, σbk, wk}Kk=1 with K = 100 components,

are learned using the PCA reduced natural parameters obtained from the training

images. Natural parameter FVs are computed for these models using (II.3). For

the DMM-FV, a reference Dirichlet model θb = {αbk, wbk}Kk=1 with 100 components,

is trained on the space of training SMNs πi’s. The FV embedding is computed

using gradient scores in (II.16) and the Fisher scaling of (II.17). The DMM-FV

and the ν(i) − FV s are Power normalized, L2 normalized and used to train linear

SVMs for scene classification.
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Results reported in table Table II.2, show that the natural parameter

ν(i)-FVs improve significantly over GMM-FVs obtained directly from SMNs (de-

noted SMN-FVs). The gain of about 13 − 14% points in accuracy demonstrates

the impact of learning an FV embedding in a Euclidean space, or, conversely,

highlights the adverse effects of working directly in the probability space. Unlike

the SMN-FV, the ν(i)-FVs are able to leverage the full discriminative power as

well as the invariance properties of CNN semantics. Due to these qualities, they

easily outperform the baseline SIFT-FVs [71] or FV’s of lower CNN layer features

(e.g. conv5-FV). The DMM-FV, on the other hand, performs very poorly. Despite

acting in the same natural parameter space ν(1) = log π, the DMM-FV is out-

performed by the ν(1)-FV by a margin of about 9-10 % points on both datasets.

This suggests that it is better to learn a simple Gaussian mixture in the space

of Dirichlet sufficient statistics, instead of directly learning a Dirichlet mixture.

Failure of the DMM-FV perhaps stems from the in-flexibility inherent to Dirichlet

modeling. The discriminative power of a GMM and it’s FV is known to increase

proportionally with the mixture size. A DMM-FV, on the other hand, deteriorates

with increasing mixture cardinality. The best performance, using a DMM-FV, is

achieved when the distribution is unimodal, as seen in fig Figure II.6. To under-

stand the reasons behind the disparity between the ν(i)-FVs and the DMM-FV,

we perform an ablation study in the following section.

II.D.8 Ablation Analysis

Consider a Dirichlet mixture {wk, αk}Kk=1 learned from the SMNs and

a Gaussian mixture {wk, µk,Σk}Kk=1 learned using natural parameter points log π.

Both the distributions specify a distinct set of K codewords {ck}Kk=1 in the common

space of ν(1)s. From the M-step of the EM algorithm, it is evident that the both

sets of codewords are of the following form.

ck =
1

nk

∑
{πi∈D}

qik log πi (II.18)
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Figure II.6 The scene classification performance of a DMM-FV varying with the

number of mixture components. The experiment is performed on MIT Indoor

scenes.

The weights qik are the posterior assignment probabilities of points πi from the

training set D and nk equals the sum of these weights
∑

i qik, estimated during the

E-step. In case of a GMM, the centroids ck equal the maximum likelihood (ML)

estimates of its means µk, upon convergence of EM. For the Dirichlet mixture, these

centroids provide an ML estimate of the function fk(α) = ψ (αk)− ψ (
∑

k αk).

Since both the codebooks reside in the same natural parameter space,

the Gaussian codewords can be used to construct a valid Dirichlet model and vice

versa. The means {µk}Kk=1 of a Gaussian in the log π space, can be mapped to a

set of Dirichlet parameters by solving the equation µk = ψ (α̃k) − ψ (
∑

k α̃k) for

α̃k’s. Thus, a GMM {wk, µk,Σk}Kk=1 in ν(1) can be mapped to a DMM {wk, α̃k}Kk=1

by estimating the α̃k’s and copying the mixture weights wk. Similarly, a mixture

of Gaussians can be anchored at the centroids µ̃k = fk(α) of a known DMM. The

mixture weights wk can be copied from the Dirichlet model. The covariances of
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the Gaussian components Σk can be initialized to the global covariance matrix Σ

estimated from the training data.

The ability to map a Dirichlet mixture into a Gaussian mixture and vice

versa, helps us design experiments to probe the Fisher vector representations of the

two models. In the first of these experiments, we evaluate the impact of a codebook

on the performance of a GMM or a DMM FV. Using SMNs extracted from MIT

Indoor scenes, we train a Dirichlet Mixture model {wk, αk}Kk=1 of K = 100 compo-

nents as well as a Gaussian mixture model {wk, µk,Σ}Kk=1 of the same size in the

log π space. We denote these models as DMM1 and GMM1 respectively. A second

Dirichlet model, DMM2 is constructed using means of GMM1 as {wk, α̃k}Kk=1. A

Fisher vector is derived using both the learned and the constructed Dirichlet mod-

els and evaluated independently for classification. Similarly, using the centroids

of the Dirichlet model DMM1, we construct a second Gaussian mixture model

GMM2 with parameters {wk, µ̃k,Σ}Kk=1. Both the Gaussian models, GMM1 and

GMM2 are used to obtain FVs in the ν(1) space that are tested for classifica-

tion. Results in table Table II.3 indicate that the performance of a Dirichlet

model (DMM1) trained from scratch is virtually similar to the performance of a

Dirichlet model (DMM2) derived from a GMM. The DMM1-FV and DMM2-FV

embeddings achieve accuracies of within 0.5% of each other (58.8% v 58.4%). Same

is the case with the Gaussian mixtures, GMM1 and GMM2. FV of the trained

GMM1 achieves an accuracy of 68.5% whereas an FV of the derived GMM2 per-

forms at 68.6%. These results suggest that the mixture model quality is perhaps

not as important as the FV encoding it is used to generate. A GMM in the natu-

ral parameter space, seems to produce a better classifier than a Dirichlet mixture

primarily, perhaps due to the way it encodes a descriptor into an FV. If the same

Gaussian mixture is used to generate a DMM-FV encoding, its performance is seen

dropping drastically (by about 10% points). On the other hand, if a learned Dirich-

let mixture model is used to produce a GMM-FV instead of its natural DMM-FV

encoding, its performance improves by the same margin. To further examine the
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impact of model quality on the power of an FV derived from it, we perform an ad-

ditional experiment with randomly initialized model centroids. A set of K natural

parameter points {log πi}Ki=1 are sampled randomly from the training set and used

as our codewords {ck}Kk=1. Using this clearly sub-optimal codebook, we construct

a Dirichlet mixture DMM3 and a Gaussian mixture GMM3 with uniform mix-

ture weights. For the GMM, the component covariances are again set to Σ. Both

the models are used to generate Fisher vectors denoted, DMM3-FV and GMM3-

FV, and tested for scene classification. The accuracy of the DMM3-FV from

table Table II.3 is 58.0%, which is not very far from the Dirichlet-FVs obtained

from learned codebooks (Gaussian or Dirichlet). The performance of the Gaussian

mixture GMM3-FV is, however, found to be much worse than GMM-FVs derived

using properly learned mixtures. The poor performance of a GMM initialized with

random means is no surprise. The centroids are not at all adapted to the data

distribution and the model is not expected to informative at all. The total lack of

impact this has on the performance of a DMM-FV is perhaps the more surprising

result. Even a randomly initialized Dirichlet model produces a DMM-FV that is

on par with the DMM-FVs of more systematically mixtures. This must mean that

the Dirichlet mixture FV is inherently deficient as a descriptor encoding, compared

to say a Gaussian mixture FV.

To understand what makes it so weak, we perform a component wise

analysis of the DMM Fisher vector encoding. For this, we consider the learned

Gaussian mixture GMM1 in log π space and the Dirichlet mixture DMM2 con-

structed from it. The FVs of these models produce a non-linear transformation of

a data point π, that can be summarized as,

Gk(π) = F−
1
2

k qk{T (π)− ck} (II.19)

Here, Fk denotes the Fisher information matrix (FIM), qk the posterior assignment

probability and rk(π) = T (π)− ck the residual of the kth component of the under-

lying mixture. By construction, the codewords of the Gaussian mixture GMM1

are the same as those used by the Dirichlet model DMM2 (ck = µk = fk(α̃)).

31



Table II.3 Comparison of Fisher vector embeddings obtained using a learned

Dirichlet mixture, denoted DMM1, a Dirichlet mixture constructed from a GMM,

denoted DMM2 and one that is initialized from randomly sampled data points,

denoted DMM3 is shown above. A similar comparison is reported between GMM1

trained on ν(1), a GMM2 constructed using DMM1 and a GMM3 initialized from

randomly sampled datapoints in ν(1). The experiments are performed on MIT

Indoor.
Fisher Vector Accuracy
DMM1-FV 58.8
DMM2-FV 58.4
DMM3-FV 58.0

GMM1-FV 68.5
GMM2-FV 68.6
GMM3-FV 61.3

The descriptor residuals log π− ck generated by the models, therefore, are exactly

the same. The difference between the two encodings stems from their different

mixture assignment functions qk and Fisher scalings Fk. The DMM2 model uses

a Fisher matrix of the form (II.17), which we denote as Hk(α̃), whereas GMM1’s

Fisher information equals Σ. The point assignment probability under the GMM1

is q(log π;µ,Σ, w) ∝ wk exp{‖ log π−µk‖Σ}, whereas under the DMM2 model, it is

q(π; α̃, w) ∝ wk exp{α̃Tk log π}. Both the differences contribute to a cumulative gap

of about 10% points in their classification performance. Starting from a GMM1-

FV, therefore, if we change its assignment function to q(π; α̃, w) or Fisher scaling

to Hk(α̃), we can verify the individual impact of the two components. Note that if

we change both, the GMM1-FV transforms into a DMM2-FV. The results of this

ablation are reported in table Table II.4. When the assignment function of the

GMM1-FV is changed to Dirichlet, its performance reduces by %. One the other

hand, when the fisher scaling is changed from Σ to Hk(α̃), a substantial loss of % is

observed. We perform a similar experient, trying to replace the scaling and assign-

ment of the DMM1-FV with those of the constructed model GMM2. The results
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Table II.4 Ablation analysis of the DMM-FV and the GMM-FV embeddings on

ν(1) space.
Mixture FV Encoding
Model Scaling Assignment Accuracy

DMM
H(α)

q(π;α,w) 58.8

q(log π; (̃µ),Σ, w) 57.7

Σ
q(π;α,w) 67.1

q(log π; (̃µ),Σ, w) 68.6

GMM
Σ

q(log π;µ,Σ, w) 68.5
q(π; α̃, w) 68.7

H(α̃)
q(log π;µ,Σ, w) 57.7
q(π; α̃, w) 58.4

again indicate only a moderate change in performance due to change of assignment

function. A big improvement is observed, however, when the Gaussian scaling Σ

is used in place of the Dirichlet scaling of Hk(α). The evidence, therefore, support

the conclusion that its Fisher information based scaling is the biggest drawback

of the DMM-FV. The structure of this matrix as shown in (II.17) is restrictive, in

that its off-diagonal elements are a scalar constant equal to −ψ′(
∑

l αkl). There-

fore, it resides in a subspace of the space of symmetric positive definite matrices

S+
d and affords very few degrees of freedom (roughly equal to the dimensionality of

α). The most important effect of any Fisher information based scaling is the decor-

relation of an FV, which is known to improve its performance significantly [71].

The DMM Fisher matrix, however, seems to fail in producing this effect. Fisher

information of a model represents the local metric on the tangent space T θb to the

model manifold. Using the analysis, one can say that a Dirichlet model manifold

is not conducive for FV based classification.

II.D.9 NP-BoS v.s. Comparable Transformations

For our BoS based scene classifier, a simple Gaussian Mixture FV con-

structed on one of the natural parameter spaces (II.10)-(II.12) seems to be the

best candidate for a Euclidean embedding E . As seen in table Table II.2, the
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performance of all three ν(i) Fisher vectors is very close to each other, although

ν(2) is slightly better than the other two. This is perhaps, because ν(2) represents

the natural parameter space that almost all known discriminant classifiers learn

in, e.g. CNN (see explanation in II.D.5). We, therefore, prefer ν(2) over others to

learn our scene classifiers.

The proposed natural parameter transformations ν(i), are the best known

solution for the problems of semantic space classification. There have been propos-

als, in the past, along similar lines to transform semantic or non-semantic prob-

ability vectors for bag-of-features style classification. Kwitt et. al. [46], propose

projecting the SMNs on the great circle using a square root embedding
√
π. This

helps alleviate the difficulty of modeling on the complex semantic simplex, to some

extent. The non-Euclidean nature of the simplex and the resulting non-linearity

of its geodesics is also noted by the authors as a major source of difficulty for

SMN based classification. The use of square root embedding was also proposed

in [16] over low-level SIFT descriptors. Instead of L2 normalizing the classical

SIFT histogram, the authors propose to L1 normalize it into a probability multi-

nomial. The, L1 normalized SIFT probabilities are transformed into “Root-SIFT”

descriptors and encoded using a Gaussian mixture FV. It is unclear whether the

distribution of low-level probabilities such as “Root-SIFT” are similar to seman-

tic multinomials. The square-root trick, nevertheless, helps them achieve some

moderate improvements over standard SIFT. We compare the square root embed-

ding of SMNs with our NP transformations for FV based scene classification. The

Root-BoS scene classifier is denoted ν(4) in table Table II.2. Its performance on

MIT Indoor and MIT SUN scene datasets , at 58.95% and 40.6% respectively, is

quite close to that of the DMM-FV but much worse than any of the natural pa-

rameter embeddings. This indicates that a square root transformation is perhaps

not enough to reverse the effects of non-linear probability transformations such as

a sigmoid or a softmax. Another approach for transforming low-level probability

descriptors was proposed by Kobayashi et. al. in [43]. Their use a log based trans-
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formation on L1 normalized SIFT descriptors is also inspired from the Dirichlet

sufficient statistics. In their work, a SIFT probability vector p is subjected to

a von-Mises transformation ν(5) = log(p+ε)−log ε
‖ log(p+ε)−log ε‖2 and summarized using a Gaus-

sian Mixture FV. The resulting image classifier was shown to improve over the

Root-SIFT FV of [16]. Except for its L2 normalization, the von-Mises embedding

proposed in [?] is somewhat similar to one of our natural parameter transforma-

tions ν(3) = log pi− log pN . When used with our SMNs for FV based classification,

we find that its performance is better than the square root embedding ν(4) but

worse than all three of our NP transformations (II.10)-(II.12). The most likely

reason for this is the projection onto the great circle through an L2 normalization,

which may work for SIFT, but doesn’t quite help CNN based semantics.

II.E Related work

The proposed semantic FV has relations with a number of works in the

recent literature.

II.E.1 FVs of layer 7 activations

The proposed representation, when computed with mapping ν(2) of (II.11),

as discussed above, acts directly on the outputs of the 8th layer (fc8) of ImageNET

CNN [44]. In that sense, it is similar to the Fisher vectors of [31], which are com-

puted using the activations from the fully connected 7th layer (fc7). The most

important difference between the two, however, is that the fc8 outputs are seman-

tic features obtained as a result of a discriminant projection on fc7. They are,

therefore, likely to be more selective. Besides their explicit semantic nature also

ensures a higher level of abstraction, as a result of which they can generalize better

than lower CNN layer features. We compare the two representations to validate

these assertions in Section II.F.2.
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II.E.2 Fine Tuning

Beyond its success on ImageNET classification, the CNN of [44] has been

shown to be highly adaptable to other classification tasks. A popular adaptation

strategy, known as “fine tuning” [30], involves performing additional iterations of

back-propagation on the new datasets. This is, however, an heuristic and time

consuming process, which needs to be monitored carefully in order to prevent

the network from over-fitting. The proposed semantic Fisher vector can also be

seen as an adaptation mechanism that fully leverages the original CNN, to extract

features, augmenting it with a Fisher vector layer that enables its application to

other tasks. This process is without heuristics and consumes much less time than

“fine-tuning”. We compare the performance of the two in Section II.F.3.

II.E.3 The Places CNN

Recent efforts of improving scene classification have relied on a pre-trained

imageNET CNN [20, 74, 31, 54]. mainly because of the superior quality of its

feature responses [92]. Our work focusses on using object semantics generated

by this network to obtain a high level representation for scene images. Zhou et.

al. propose a more direct approach that does not rely on the ImageNET CNN

at all. They simply learn a new CNN on a large scale database of scene images

known as the “Places” dataset [95]. Although the basic architecture of their Places

CNN is the same as that of the ImageNET CNN, the type of features learned

are very different. While the convolutional units of ImageNET CNN respond

to object-like occurrences, those in Places CNN are selective of landscapes with

more spatial features. The embedding of the Places CNN, therefore, produces a

holistic representation of scenes that is complementary to our semantic FV. We

demonstrate the effect of combining the two representations in our classification

experiments.

36



Table II.5 Impact of semantic feature extraction at different scales.

Dataset Feat full img 160 128 96 80 Best 3 Best 4

Indoor
fc8 48.5 66.6 68.5 67.8 67.38 71.24 72.86
fc7 59.5 64.7 65.1 65.4 65.37 68.8 69.7

SUN
fc8 32.6 47.5 49.61 50.03 49.39 53.24 54.4
fc7 43.76 48.08 48.3 48.46 47.32 51.8 53.0

II.F Evaluation

In this section we report on a number of experiments designed to evaluate

the performance of the semantic FV.

II.F.1 Experimental setup

All experiments were conducted on the 67 class MIT Indoor Scenes [63]

and the 397 class SUN Scenes [89] datasets. The CNN features were extracted

with the Caffe library [40]. For FVs, the relevant CNN features (fc7 or fc8) were

extracted from local P × P image patches on a uniform grid. For simplicity, the

preliminary experiments were performed with P = 128. A final round of experi-

ments used multiple scale features, with P ∈ {96, 80, 128, 160}. For all GMM-FVs

the local features were first reduced to 500 dimensions, using a PCA, and then

pooled using (II.3) and a 100 component mixture. The DMM-FV of Section II.D.6

was learned with a 50 component mixture on the 1,000 dimensional SMN space.

As is common in the literature,all Fisher vectors were power normalized and L2

normalized. This resulted in DMM and GMM FVs of size of 50000, dimensions of

which were further reduced to 4096, by PCA. In some experiments, we also evaluate

classifiers based on fc7 and SMN features extracted globally, as in [20]. The global

fc7 features were square-rooted and L2 normalized, whereas the global SMNs were

simply square rooted. Scene classifiers trained on all image representations were

implemented with a linear SVM.
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II.F.2 The role of invariance

To test the hypothesis that the semantic FV is both more discriminant

and invariant than FVs extracted from lower network layers, we compared its per-

formance with that of the fc7 FV of [31]. In this experiment, the CNN features

were extracted at multiple scales (globally as well as from patches of size 80, 96,

128 and 160 pixels). Table Table II.5 shows the results of the sematic FV (denoted

fc8) and the fc7 FV. Several remarks are worth making, in light of previous reports

on similar experiments [30, 20, 31]. First, when compared to the approach of ex-

tracting CNN features globally [20], the localized representations have far better

performance. Second, while fc7 features extracted globally are known to perform

poorly [31], the use of global 8th layer features leads to even worse performance.

This could suggest the conclusion that layer 8 somehow extracts “worse features”

for scene classification. The remaining columns, however, clearly indicate other-

wise. When extracted locally, semantic descriptors are highly effective, achieving

a gain of up to 3 points with respect to the fc7 features. The gap in performance

between the localized and global semantic descriptors is explained by the localized

nature of scene semantics, which vary from patch to patch. A global semantic

descriptors is just not expressive enough to capture this diversity. Third, recent

arguments for the use of intermediate CNN features should be revised. On the

contrary, the results of the table support the conclusion that these features are

both less discriminant and invariant than semantic descriptors. When combined

with a proper encoding, such as the semantic FV, the latter achieve the best scene

classification results.

Finally, to ensure that the gains of the semantic FV are not just due to

the use of the transformation of (II.11), we applied the transformation to the fc7

features as well. Rather than a gain, this resulted in a substantial performance

decrease (58% compared to the 65.1% of the fc7-FV on MIT Indoors at patch

size 128). This was expected, since the natural parameter space arguments do not

apply in this case.
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II.F.3 Comparison to the state of the art

Concatenating Fisher vectors of fc7 features computed at multiple patch

scales was shown to produce substantial gains in [31]. We implemented this strat-

egy for both the fc7-FV and the semantic FV, with the results shown in Table Table

II.5. Combining the fc7-FVs at three patch scales resulted in classification accu-

racies of 68.8% on MIT Indoor and 51.8% on SUN. While this is a non-trivial

improvement over any of the single-scale classifiers, the concatenation of semantic-

FVs at 3 scales produced even better results (accuracies of 71.24% on MIT Indoor

and 53.24% on SUN). Similar gains were observed when using 4 patch scales, as

reported in the table.

A comparison of our multiscale semantic FV with other leading repre-

sentations derived from the ImageNET CNNs is shown in table Table II.6. As

expected, the pioneering DeCaf [20] representation is vastly inferior to all other

methods since it describes complex scene images with a globally extracted de-

scriptor using an object CNN [44]. Among techniques that rely on local feature

extraction are the proposals of Liu et. al. [54] and Razavian et. al. [74]. The scene

representation in [54] is a sparse code derived from the 6th layer activations (fc6)

of the CNN. Razavian et. al. [74], use features from the penultimate layer of the

OverFeat network [73] extracted from coarser spatial scales.Since, the features used

in both [54] and [74] lack the invariance of semantics, their classifiers are easily

outperformed by our semantic FV classifier. We also compare with the technique

referred to as fine-tuning [30] which adapts the imageNET CNNs directly to the

task of scene classification. The process requires a few tens of thousands of back-

propagation iterations on the scene dataset of interest and lasts about 5-10 hours

on a single GPU. The resulting classifier, however, is significantly worse than our

semantic FV classifier.

An alternative to using pre-trained object classification CNNs [44, 73] for

scenes is to learn a CNN directly on a large scale scene dataset. This was recently

performed by Zhou et. al. using a 2 million image Places dataset [95]. Table Table
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Table II.6 Comparison with the state-of-the-art methods using ImageNET trained

features. *-Indicates our implementation.

Method MIT Indoor MIT SUN
fc8-FV (Our) 72.86 54.4 + 0.3
fc7-FV [31]* 69.7 53.0 + 0.4

fc7-VLAD [31] 68.88 51.98
ImgNET finetune 63.9 48.04 + 0.19

OverFeat + SVM [74] 69 -
fc6 + SC [54] 68.2 -
DeCaF [20]* 59.5 43.76

Table II.7 Comparison with a CNN trained on Scenes [95]

Method MIT Indoor MIT SUN
ImgNET fc8-FV (Our) 72.86 54.4 + 0.3

Places fc7 [95] 68.24 54.34 + 0.14
Combined 79.0 61.72 + 0.13

II.7 indicates a comparison between a scene representation obtained with the Places

CNN and our ImageNET based semantic FV. The results of semantic FV are

slightly better that theirs on the Indoor scenes dataset, whereas, on SUN, both

the descriptors perform comparably. More importantly, a simple concatenation of

the two produces a gain of almost 7% in accuracy on both datasets, indicating

that the embeddings are, in fact, complimentary. These results are, to the best of

our knowledge, state-of-the-art on scene classification.

II.G Conclusions

In this chapter we discussed the benefits of modeling scene images as bags

of object semantics from an ImageNET CNN instead of its lower layer activations.

To leverage the superior quality of semantic descriptors, we propose an effective

approach to summarize them with a Fisher vector, which is non-trivial. The se-

mantic FV provides a better classification architecture than an FV of low-level

features or a even fine-tuned classifier. When combined with features from a scene
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classification CNN, our semantic FV produces state-of-the-art results.
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Chapter III

Improving Transfer with semantic

covariance model
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III.A Introduction

In this chapter we propose improvements to the ImageNet based seman-

tic Fisher vectors introduced in Chapter II for scene classification. Like in the

classifical FV literature [61], the semantic FVs were derived using Gaussian mix-

tures learned with a diagonal covariance per component. We refer to such a model

as a variance-GMM. While variance only modeling in GMMs has been sufficient

for lower dimensional SIFT descriptors [71], it may not necessarily be the case

for much higher dimensional CNN features. The ImageNet semantics or natural

parameter features, for instance, most likely reside in a non-linear manifold of the

ambient high dimensional semantic space. A relatively inflexible variance-GMM

will require large number of components to cover such a data distribution. On

the other hand, a GMM that is capable of modeling full covariance, locally, will

certainly be more efficient. However, full covariance modeling in large spaces is

not very easy. The number of parameters to be estimated increase quadratically

with the dimensionality of the space. The amount of data available is always in-

sufficient for learning such large mixture models. One could, however, resort to

approximate covariance modeling using models such as a mixture of factor analyz-

ers (MFA) [26, 86]. The MFA model covers a non-linear data manifold with local

linear approximations. The data is assumed to be generated by a simpler Gaussian

distribution in localized low dimensional latent spaces and then projected linearly

into the high dimensional observation space. The MFA effectively provides a low

rank approximation for the full covariance of a Gaussian and can, therefore, be

learned with reasonably less data available in transfer learning scenarios. It also

generates higher dimensional covariance statistics, which we show to be better

than the gradient scores with respect to variances, for semantic classification. The

MFA generated Fisher scores, in fact, outperform the semantic fisher vectors of

Chapter II further improving the efficacy of CNN based cross-domain (object to

scene) knowledge transfer.
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We first begin with a re-interpretation of Fisher vectors that were in-

troduced in Chapter II and show that they are in fact obtained in the popular

Expectation maximization (EM) algorithm. This is result is used to obtain Fisher

scores for the MFA model. The MFA Fisher information is derived using an old re-

sult related to higher order moments of zero mean Gaussian random variables. The

MFA based Fisher vectors are then evaluated for transfer based scene classification

on the MIT Indoor and SUN benchmarks.

III.B Fisher scores

In computer vision, an image is frequently interpreted as a set of descrip-

tors D = {x1, . . . , xn} sampled i.i.d. from some generative model p(x; θ). Since

most classifiers require fixed-length inputs, it is common to map the bag of de-

scriptors I into a fixed-length vector. A popular mapping consists of computing

the gradient (with respect to θ) of the log-likelihood ∇θL(θ) = ∂
∂θ

log p(D; θ) for a

model θb. This is known as the Fisher score of θ. This gradient vector is often nor-

malized by the square root of the Fisher information matrix F of p(x; θ), according

to F−
1
2∇θL(θ). This is referred to as a Fisher vector (FV) [37] representation of

D.

Strength of a Fisher vector depends on the expressiveness of the gener-

ative model p(x; θ). An FV derived for a sophisticated probabilistic model can

capture higher order trends of the feature distribution within images. E.g., a

Fisher vector of a large enough mixture of Gaussians (GMM) is known to be a

strong descriptor of image context [61, 71]. For complex distributions like GMMs

and hidden Markov models, directly deriving Fisher scores is not always easy. We

show, however, that scores can be trivially obtained using a single step of the

expectation maximization (EM) algorithm commonly used to learn such models.
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III.B.1 Fisher Scores from EM

Consider the log-likelihood ofD under a latent-variable model log p(D; θ) =

log
∫
p(D, z; θ)dz of hidden variable z. Since the left-hand side does not depend

on the hidden variable, this can be written in an alternate form, which is widely

used in the EM literature,

log p(D; θ) = log p(D, z; θ)− log p(z|D; θ)

=

∫
q(z) log p(D, z; θ)dz −

∫
q(z) log p(z|D; θ)dz

=

∫
q(z) log p(D, z; θ)dz −

∫
q(z) log q(z)dz

+

∫
q(z) log

q(z)

p(z|D; θ)
dz

= Q(q; θ) +H(q) +KL(q||p; θ) (III.1)

where Q(q; θ) is the “Q” function, q(z) a general probability distribution, H(q) its

differential entropy and KL(q||p; θ) the Kullback Liebler divergence between the

posterior p(z|D; θ) and q(z). Hence,

∂

∂θ
log p(D; θ) =

∂

∂θ
Q(q; θ) +

∂

∂θ
KL(q||p; θ) (III.2)

where

∂

∂θ
KL(q||p; θ) = −

∫
q(z)

p(z|D; θ)

∂

∂θ
p(z|D; θ)dz. (III.3)

In each iteration of the EM algorithm the q distribution is chosen as q(z) =

p(z|D; θb), where θb is a reference parameter vector (the parameter estimates from

the previous EM iteration) and

Q(q; θ) =
∫
p(z|D; θb) log p(D, z; θ)dz (III.4)

= Ez|D;θb [log p(D, z; θ)]. (III.5)

It follows that

∂

∂θ
KL(q||p; θ)

∣∣∣∣
θb

= −
∫
p(z|D; θb)

p(z|D; θb)

∂

∂θ
p(z|D; θ)

∣∣∣∣
θb
dz

= − ∂

∂θ

∫
p(z|D; θ)

∣∣∣∣
θb
dz

= 0
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and

∂

∂θ
log p(D; θ)

∣∣∣∣
θb

=
∂

∂θ
Q(p(z|D; θb); θ)

∣∣∣∣
θb

(III.6)

Thus, the Fisher score ∇θL(θ)|{θ=θb} of background model θb is the gradient of the

Q-function of EM evaluated at reference model θb.

An alternative approach to the same result, requires analysis of the KL

divergence between q = p(z|D; θb) and p(z|D; θ). By rearranging terms in (III.1)

it can be written as,

KL(θb; θ) = log p(D; θ)−Q(θb; θ)−Hq(θ
b)

For models that allow exact inference, this expression is mathematically tractable

and continuously differentiable with respect to θ. The divergence, therefore, smoothly

reduces to 0 as θ approaches θb from any direction. The slope of a tangent to

KL(θb; θ) (it’s derivative) at θ = θb, therefore, equals 0. It follows that

∂

∂θ
KL(θb; θ)

∣∣∣∣
θ=θb

= 0

∂

∂θ
log p(D; θ)

∣∣∣∣
θb
− ∂

∂θ
Q(p; θ)

∣∣∣∣
θb

= 0

∂

∂θ
log p(D; θ)

∣∣∣∣
θb

=
∂

∂θ
Q(p; θ)

∣∣∣∣
θb

The computation of the Fisher score thus simplifies into the two steps of

EM. First, the E step computes the Q function Q(p(z|x; θb); θ) at the reference θb.

Second, the M-step evaluates the gradient of the Q function with respect to θ at

θ = θb. This interpretation of the Fisher score is particularly helpful when efficient

implementations of the EM algorithm are available, e.g. the recursive Baum-Welch

computations commonly used to learn hidden Markov models [64].

III.B.2 Bag of features

Fisher scores are usually combined with the bag-of-features representa-

tion, where an image is described as an orderless collection of localized descriptors

46



D = {x1, x2, . . . xn}. These were traditionally SIFT descriptors, but have more

recently been replaced with responses of object recognition CNNs [31, 12]. In this

work we use the semantic features proposed in Chapter II, which are obtained by

transforming softmax probability vectors pi, obtained for image patches, into their

natural parameter form.

III.B.3 Gaussian Mixture Fisher Vectors

A GMM is a model with a discrete hidden variable that determines the

mixture component which explains the observed data. The generative process is as

follows. A mixture component zi is first sampled from a multinomial distribution

p(z = k) = wk. An observation xi is then sampled from the Gaussian component

p(x|z = k) ∼ G(x, µk, σk) of mean µk and variance σk. Both the hidden and

observed variables are sampled independently, and the Q function simplifies to

Q(p(z|D; θb); θ) =
∑

i
Ezi|xi;θb

[∑
k
I(zi, k) log p(xi, k; θ)

]
=

∑
i,k
hik log p(xi|zi = k; θ)wk (III.7)

where I(.) is the indicator function and hik is the posterior probability p(k|xi; θb).

The probability vectors hi are the only quantities computed in the E-step.

In the Fisher vector literature [62, 71], the GMM is assumed to have

diagonal covariances. This is denoted as the variance-GMM. Substituting the

expressions of p(xi|zi = k; θ) and differentiating the Q function with respect to

parameters θ = {µk, σk} leads to the two components of the Fisher score

Gµdk(I) =
∂

∂µdk
L(θ) =

∑
i
p(k|xi)

(
xdi − µdk
(σdk)

2

)
(III.8)

Gσd
k
(I) =

∂

∂σdk
L(θ) =

∑
i
p(k|xi)

[
(xdi − µdk)2

(σdk)
3
− 1

σdk

]
. (III.9)

These quantities are evaluated using a reference model θb = {µbk, σbk} learned (with

EM) from all training data. To compute the Fisher vectors, scores in (III.8)

and (III.9) are often scaled by an approximate Fisher information matrix, as de-

tailed in [71]. When used with SIFT descriptors, these mean and variance scores

47



usually capture complimentary discriminative information, useful for image classi-

fication [62]. Yet, FVs computed from CNN features only use the mean gradients

similar to (III.8), ignoring second-order statistics [31]. In the experimental section,

we show that the variance statistics of CNN features perform poorly compared to

the mean gradients. This is perhaps due to the inability of the variance-GMM to

accurately model data in high dimensions. We test this hypothesis by considering

a model better suited for this task.

III.B.4 Fisher Scores for the Mixture of Factor Analyzers

A factor analyzer (FA) is a type of a Gaussian distribution that models

high dimensional observations x ∈ RD in terms of latent variables or “factors”

z ∈ RR defined on a low-dimensional subspace R << D [26]. The process can

be written as x = Λz + ε, where Λ is known as the factor loading matrix and ε

models the additive noise in dimensions of x. Factors z are assumed distributed as

G(z, 0, I) and the noise is assumed to be G(ε, 0, ψ), where ψ is a diagonal matrix.

It can be shown that x has full covariance S = ΛΛT + ψ, making the FA better

suited for high dimensional modeling than a Gaussian of diagonal covariance.

A mixture of factor analyzers (MFA) is an extension of the FA that allows

a piece-wise linear approximation of a non-linear data manifold. Unlike the GMM,

it has two hidden variables: a discrete variable s, p(s = k) = wk, which determines

the mixture assignments and a continuous latent variable z ∈ RR, p(z|s = k) =

G(z, 0, I), which is a low dimensional projection of the observation variable x ∈ RD,

p(x|z, s = k) = G(x,Λkz+µk, ψ). Hence, the kth MFA component is a FA of mean

µk and subspace defined by Λk. Overall, the MFA components approximate the

distribution of the observations x by a set of sub-spaces in observation space. The
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Q function is

Q(θb; θ) =
∑

iEzi,si|xi;θb [
∑

k I(si, k) log p(xi, zi, si = k; θ)]

=
∑

i,k
hikEzi|xi;θb

[
logG(xi,Λkzi + µk, ψ)

+ logG(zi, 0, I) + logwk

]
where hik = p(si = k|xi; θb). After some simplifications, the E step reduces to

computing

hik = p(k|xi; θb) ∝ wbkN (xi, µ
b
k, S

b
k) (III.10)

Ezi|xi;θb [zi] = βbk(xi − µbk) (III.11)

Ezi|xi;θb [ziz
T
i ] = βbk(xi − µbk)(xi − µbk)Tβb

T

k

−
(
βbkΛ

b
k − I

) (III.12)

with Sbk = Λb
kΛ

bT

k +ψb and βbk = ΛbT

k

(
Sbk
)−1

. The M-step then evaluates the Fisher

score of θ = {µbk,Λb
k}. With some algebraic manipulations, this can be shown to

have components

Gµk(I) =
∑

i
p(k|xi; θb){Sbk}−1

(
xi − µbk

)
(III.13)

GΛk
(I) =

∑
i
p(k|xi; θb)

[
{Sbk}−1(xi − µbk)(xi − µbk)Tβb

T

k

− {Sbk}−1Λb
k

] (III.14)

For a detailed discussion of the Q function, the reader is referred to the EM deriva-

tion in [26]. Note that the scores with respect to the means are functionally similar

to the first order residuals in (III.8). However, the scores with respect to the fac-

tor loading matrices Λk account for covariance statistics of the observations xi,

not just variances. We refer to the representations (III.13) and (III.14) as MFA

Fisher scores (MFA-FS). The mean scores (III.13) are scaled with the Fisher infor-

mation matrix Sbk which equals the component covariance. For the factor loading

scores in (III.14), the derivation of Fisher information is presented in the following

section.
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III.B.5 Fisher Information

For a mixture distribution, the Fisher information is often approximated

as a block-diagonal matrix that scales the Fisher scores of the kth mixture compo-

nent with inverse square-root of the sub-matrix

Fk = wkCov (Gk(x)) (III.15)

Here wk is the weight of the kth mixture and Gk(x) is the data term of its Fisher

score. Therefore, to approximate the Fisher information with respect to Λks, we

need to compute the covariance of the data term in (III.14). This term is a D×R

matrix, every (i, j)th entry of which is a product of two Gaussian random variables,

G(i,j)
k (x) = figj

= b{Sbk}−1(x− µbk)cibβ
b
k(x− µbk)cj (III.16)

Here bW ci denotes the ith element of the vector W . The covariance matrix of the

vectorized Fisher score then contains the following terms,

Cov(G(x))(i,j),(k,l) = E [figjfkgl]− E[figj]E[fkgl]

This can be simplified using the expectation property of Gaussian random vari-

ables 1 as

Cov(G(x))(i,j),(k,l) = E [figl]E [fkgj] + E [fifk]E [gjgl]

(III.17)

where the individual expectation terms can be computed as

E [figl]E [fkgj] = b(Sbk)−1Λb
kc(i,l)b(S

b
k)
−1Λb

kc(k,j) (III.18)

E [fifk]E [gjgl] = b(Sbk)−1c(i,k)bβ
b
kΛ

b
kc(j,l) (III.19)

The Fisher scaling for the kth MFA component can be obtained by combining (III.15),

(III.17) and (III.18). While this derivation of the MFA information has a tutorial

1For Gaussian random variables {x1, x2, x3, x4}, the property E[x1x2x3x4] = E[x1x2]E[x3x4] +
E[x1x3]E[x2x4] + E[x1x4]E[x2x3] holds true.
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Figure III.1 Performance of Latent space statistics of (III.12) for different latent

space dimensions. The accuracy of MFA-FS (III.14) for K=50, R=10 included for

reference.

value, in practice it did not result in any gains over simply using the scores of Λ

as our image representation. Therefore, we avoid scaling the scores in (III.14) for

our image classification experiments, although they may be useful in some other

scenarios.

III.B.6 Evaluating MFA embeddings

In this section we present an extensive evaluation of the MFA based Fisher

embedding for BoS classification.

Impact of Covariance Modeling

We begin with an experiment to compare the modeling power of MFAs

to variance-GMMs. This was based on ImageNet SMNs extracted using the CNN

in [44] on a 128x128 patch scale. An MFA of K = 50 components, and a la-
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tent space dimension of R = 10 was learned on the natural parameters ν(2). To

make the learning manageable, the descriptors were first reduced using PCA to

500 dimensions. Classification is performed on both MIT Indoor and SUN scene

datasets. Table Table III.2 presents the classification accuracy of a GMM-FV that

only considers the mean - GMM-FV(µ) - or variance - GMM-FV(σ) - parame-

ters and a MFA-FS that only considers the mean - MFA-FS(µ) - or covariance -

MFA-FS(Λ) - parameters. The most interesting observation is the complete failure

of the GMM-FV (σ), which under-performs the GMM-FV(µ) by more than 10%.

The difference between the two components of the GMM-FV is not as startling

for lower dimensional SIFT features [62]. However, for CNN features, the dis-

criminative power of variance statistics is exceptionally low. This explains why

previous FV representations for CNNs [31] only consider gradients with respect

to the means. A second observation of importance is that the improved model-

ing of covariances by the MFA eliminates this problem. In fact, MFA-FS(Λ) is

significantly better than both GMM-FVs. It could be argued that a fair compar-

ison requires an increase in the GMM modeling capacity. Fig. Table III.3 tests

this hypothesis by comparing GMM-FVs(σ) and MFA-FS (Λ) for various numbers

of GMM components (K ∈ {50, . . . , 500}) and MFA hidden sub-spaces dimen-

sions (R ∈ {1, . . . , 10}). For comparable vector dimensions, the covariance based

scores always significantly outperforms the variance statistics on both datasets. A

final observation is that, due to covariance modeling in MFAs, the MFA-FS(µ)

performs better the GMM-FV(µ). The first order residuals pooled to obtain the

MFA-FS(µ) (III.13) are scaled by covariance matrices instead of variances. This lo-

cal de-correlation provides a non-trivial improvement for the MFA-FS(µ) over the

GMM-FV(µ)(∼ 1.5% points). Covariance modeling was previously used in [81] to

obtain FVs w.r.t. Gaussian means and local subspace variances (eigen-values of

covariance). Their subspace variance FV, derived with our MFAs, performs much

better than the variance GMM-FV (σ), due to a better underlying model (60.7% v

53.86% on Indoor). It is, however, still inferior to the MFA-FS(Λ) which captures
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Figure III.2 Comparison of MFA-FS obtained with different mixture models. The

size of the MFA-FS (K ×R) is kept constant. From left to right, the latent space

dimensions R are incraesed while decreasing the number of mixture components

K. Optimal result is obtained when the model combines adequate representation

power in the latent space as well as the ability to model spatially (K = 50, R =

10).

full covariance within local subspaces.

While a combination of the MFA-FS(µ) and MFA-FS(Λ) produces a small

improvement (∼ 1%), we restrict to using the latter in the remainder of this work.

Local v Global Codebook

We experiment here with the structure of the MFA model and evaluate

its impact on the MFA-FS embedding. We learn multiple MFA models such that

the size of the second order MFA-FS (Λ) obtained from each of them remains fixed

at 250K dimensions. Specifically, the mixture cardinality is varied from K = 250

to K = 10, and at each step a reduction in K is traded off for an increase in the
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latent space dimensions R (R varies from 2 to 50). The MFA-FS obtained from

each of these models is evaluated for MIT Indoor scene classification.

The results in fig Figure III.2 indicate a steady increase in accuracy of the

representation as K decreases from 250 to 50 and latent space dimensions increase

simultaneously from 2 to 10. This confirms our earlier assumption about the MFA

model, that if adequate parameters are allowed to approximate the local covariance

of data, the model can be economical in the number of mixture components. On

the other hand, if the latent space dimensions R are increased further in exchange

of decreasing number of mixture components, the performance of the FS decreases

steadily. Trying to improving the covariance approximation by increasing R at the

cost of the model’s ability to cover the manifold impacts the final performance.

Best results are achieved when the MFA combines a sufficient number of Gaussians

that implement a reasonable linear approximation of the local manifold (e.g. K =

50, R = 10).

Latent Space Statistics

The scores MFA-FS(Λ) incorporate second order sufficient statistics of

dimensions K×D×R, where K is the number of components, D is the size of the

observation space and R, the size of the latent space. Alternatively we could use the

latent space second order statistics in (III.12) as an image representation. These

are directly obtained using the E-step and their dimensionality is approximately

K×R2

2
. For a moderately small latent space R << D, the representation in (III.12)

can be used as a low-dimensional alternative to MFA-FS(Λ).

We evaluate (III.12), which we refer to as Latent Fisher statistics (LFS)

on MIT Indoor scene classification. As features, we again use the 128x128 patch

ImageNet BoS generated by [44]. The MFA models used to obtain LFS, have a

fixed mixture size of K = 50. The latent space size is increased from R = 50

to R = 120 to increase the dimensionality of the LFS. Results in fig Figure III.1

shows that for a moderate size of 60K dimensions, the LFS achieves about 69.4%
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Table III.1 Comparison of MFA-FS with semantic “gist” embeddings learned using

ImageNet BoS and the Places dataset.

Descriptor MIT Indoor SUN
MFA FS (Λ) 71.11 53.38

BoS-fc1 64.84 47.47
BoS-fc2 69.36 50.9
BoS-fc3 70.6 53.12

accuracy which is only 1.6% worse than the accuracy of the 250K dimensional

MFA-FS(Λ). Increasing the latent space dimensions R to {80, 100, 120} increases

the accuracy above 70%. The LFS, however, never outperforms an MFA-FS of a

comparable size, perhaps, because a larger model is neede to generate the former.

Under the constrains of transfer learning, the data may not be enough to properly

learn such large MFAs.

MFA-FS v BoS “gist”

The MFA-FS embedding derives from a bag-of-descriptors model of an

image, which was used very often in classical vision literature [85, 14, 48, 62].

Due to the i.i.d. assumptions in these models, the embeddings derived from them

are very flexible and do not exhibit template like rigidity. On the other hand,

neural networks have a tendency to learn “gist”-style image representations that

are more holistic non-linear templates of a visual concept. To compare our MFA-

FS representation with NN based “gist embeddings”, we propose to learn an MLP

with one or more fully connected layers and ReLu non-linearities on top of the

ImageNet BoS generated by the pre-trained network in [44]. The BoS map is of a

fixed size (10 x 10 x 1000), with the ImageNet CNN generating a 1000 dimensional

ν(2) descriptor for roughly every 128x128 pixel region. A fully connected layer

on top of this map maps it into 4096 dimensions and is followed by a ReLu non-

linearlity. Successive fully connected layers with input v output channels (4096 x

4096) and ReLu stages can be added to make the embedding deeper before the

55



final classification layer. In the fc layers we employ “drop-out” with a probability

of 0.2. The network embeddings are denoted BoS-fc1, BoS-fc2 or BoS-fc3 based

on the number of fc layers used on top of the semantic map. We propose to train

the “gist” embeddings directly with a scene classification loss and the ImageNet.

The most immediate problem faced during training is the insufficiency of

data in a transfer scenario. The total number of parameters in the embedding is

almost equal to the ImageNet CNN itself. A dataset of the size of MIT Indoor, for

example, proves to be highly inadequate to train such a heavy embedding. The

resulting accuracy of scene classification drops as low as 33%. The only way to learn

this embedding, therefore, is using a dataset that is as large as ImageNet itself. We

use the large scale scene classification dataset named Places, introduces recently by

Zhou et. al. [95]. It consists of 2.4 M training images distributed across 200 scene

categories. The training of the “gist” embeddings on this data takes many days

on a GPU, as opposed to the MFA-FS training which takes a couple hours. The

complexity of these embeddings also far exceeds that of the MFA-FS which is based

on a PCA and a moderately sized mixture. We use the learned BoS-fc embeddings

from Places dataset, and use them as image representations for transfer based

scene classification on MIT Indoor and SUN. As seen in table Table III.1, despite

the complexity of these BoS-fc embeddings and the relatively large amount of data

required to learn them (2.4M Places images v 5K Indoor or 20K SUN images),

the performance is not much better than the MFA-FS. The BoS-fc representation

can of course be made deeper by adding more layers, and the performance may

become better than the MFA-FS. It is not possible, however, without millions of

additional images and days of training, none of which are needed for our transfer

based MFA-FS image representation. In a later section, we show that our MFA-FS

classifier is also competitive with very deep CNNs are trained end-to-end on the

Places dataset for scene classification.
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III.C Related work

Although most methods using pre-trained ImageNet CNN features de-

fault to the GMM FV embedding [31, 12], some recent works have tried to explore

different pooling strategies [54, 52, 25]. We briefly introduce these methods here

and compare to their results in our experimental section.

III.C.1 Gradients based on Sparse Coding

The work of Liu et. al. [54] is motivated by the assumption that a Gaus-

sian mixture of finite size may not be effective in modeling high dimensional fea-

tures such as those generated by a CNN. Their proposal is a generative Gaussian

distribution p(x|u) ∼ N (Bu,Σ) with a random mean that resides in the span of

basis vectors B. The mean vector is indexed by a code u sampled from a zero mean

Laplace distribution. The approximate marginal log likelihood of features reduces

to a standard sparse coding objective [90] which is differentiated with respect to

dictionary B to obtain their final image representation. We compare their scene

classification performance with our proposed MFA gradient representation.

III.C.2 Bilinear Pooling

Lin et. al. [52] have recently proposed a simple bilinear pooling of CNN

features for the task of image classification. Their classifier makes predictions in

the space of an image representation obtained by aggregating outer products xix
T
i

of CNN features. The representation was shown to be fine-tunable to the task

along with the CNN layers. Gao et. al. [25] recently proposed a learnable low-

dimensional projection for these bilinear descriptors to make them more compact.

Since a bilinear pooled representation captures correlation between CNN features,

it is, in some sense, similar to our MFA gradients. In our experiments, therefore,

we compare with the scene classification results presented in these works.
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Table III.2 Classification accuracy (K = 50, R = 10).

Descriptor MIT Indoor SUN
GMM FV (µ) 66.08 50.01
GMM FV (σ) 53.86 37.71
MFA FS (µ) 67.68 51.43
MFA FS (Λ) 71.11 53.38

III.D Scene Image Classification

We finally compare the proposed MFA-FS representation in (III.14) with

the state-of-the-art methods in scene classification. We build these classifiers using

image BoS obtained from three different ImageNet CNNs, namely, the 8 layer

network of [44] (denoted as AlexNet) and the deeper 16 and 19 layer networks

of [75] (denoted VGG-16 and VGG-19, respectively). These CNNs assign 1000

dimensional object recognition probabilities to P × P patches (sampled on a grid

of fixed spacing) of the scene images, with P ∈ {128, 160, 96}. For the MFA-

FS representation, image SMNs are used in their natural parameter form ν(2)

and PCA-reduced to 500 dimensions as in Chapter II. The scene image BoS

is mapped into the embedding, using (III.13), (III.14) and a background MFA

of size K = 50, R = 10. Note that a separate MFA-FS is generated for every

imageNet CNN (AlexNet, VGG16 and VGG19) for every fixed patch scale P of

SMN extraction. As usual in the FV literature, the MFA-FS vectors are power

normalized, L2 normalized, and classified with a cross-validated linear SVM.

The proposed classifiers are compared to scene CNNs, trained on the large

scale Places dataset. In this case, the features from the penultimate CNN layer are

used as a holistic scene representation and classified with a linear SVM, as in [95].

We use the places CNNs trained with the AlexNet and the VGG-16 architectures

provided by the authors. We also compare our performance with ImageNet based

transfer learning methods that combine FV-like embeddings with different CNN

features [32, 54, 55, 12, 88, 25, 51] for scene classification.
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Table III.3 Classification accuracy vs. descriptor size for MFA-FS(Λ) of K = 50

components and R factor dimensions and GMM-FV(σ) of K components. Left:

MIT Indoor. Right: SUN.
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III.D.1 Multi-scale learning and Deep CNNs

First we employ a well known trick to improve the performance of our

MFA based classifiers. Recent works have demonstrated gains due to combining

deep CNN features extracted at multiple-scales. Table Table III.4 presents the

classification accuracies of the MFA-FS (Λ) based on AlexNet, and 16 and 19 layer

VGG features extracted from 96x96, 128x128 and 160x160 pixel image patches, as

well as their concatenation (3 scales). These results confirm the benefits of multi-

scale feature combination, which achieves the best performance for all CNNs and

datasets.

III.D.2 Comparison with ImageNet based Classifiers

We next compared the MFA-FS to state of the art scene classifiers also

based on transfer from ImageNet CNN features [54, 12, 25]. Since all these methods

only report results for MIT Indoor, we limited the comparison to this dataset, with

the results of Table Table III.6. The GMM FV in [12] is computed using convolu-

tional features from AlexNet or VGG-16 extracted in a large multi-scale setting.

Liu et. al. proposed a gradient representation based on sparse codes. Their initial
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Table III.4 MFA-FS classification accuracy as a function of patch scale.

MIT Indoor SUN

AlexNet

160x160 69.83 52.36
128x128 71.11 53.38
96x96 70.51 53.54

3 scales 73.58 55.95

VGG-16

160x160 77.26 59.77
128x128 77.28 60.99
96x96 79.57 61.71

3 scales 80.1 63.31

VGG-19

160x160 77.21 -
128x128 79.39 -
96x96 79.9 -

3 scales 81.43 -

results were reported on a single patch scale of 128x128 using AlexNet features [54].

More recently, they have proposed an improved H-Sparse representation, combined

multiple patch scales and used VGG features in [55]. The recently proposed bi-

linear (BN) descriptor pooling of [52] is similar to the MFA-FS in the sense that

it captures global second order descriptor statistics. The simplicity of these de-

scriptors enables the fine-tuning of the CNN layers to the scene classification task.

However, their results, reproduced in [25] for VGG-16 features, are clearly inferior

to those of the MFA-FS without fine-tuning. Gao et. al. [25] propose a way to

compress these bilinear statistics with trainable transformations. For a compact

image representation of size 8K, their accuracy is inferior to a representation of

5K dimensions obtained by combining the MFA-FS with a simple PCA.

These experiments show that the MFA-FS is a state of the art procedure

for task transfer from object recognition (on ImageNet) to scene classification (e.g.

on MIT Indoor or SUN). Its closest competitor is the classifier of [12], which

combines CNN features in a massive multiscale setting ( 10 image sizes). While

MFA-FS outperforms [12] with only 3 image scales, its performance improves even
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Table III.5 Performance of scene classification methods. *-combination of patch

scales (128, 96, 160).

Method MIT Indoor SUN
MFA-FS + Places (VGG) 87.23 71.06

MFA-FS + Places (AlexNet) 79.86 63.16
MFA-FS (VGG) 81.43 63.31

MFA-FS (AlexNet) 73.58 55.95

Full BN (VGG) [25] 77.55 -
Compact BN (VGG) [25] 76.17 -

H-Sparse (VGG) [55] 79.5 -
Sparse Coding (VGG) [55] 77.6 -

Sparse Coding (AlexNet) [54] 68.2

MetaClass (AlexNet) + Places [88] 78.9 58.11
VLAD (AlexNet) [31] 68.88 51.98
FV+FC (VGG) [12] 81.0 -

FV+FC (AlexNet) [12] 71.6 -
Mid Level [51] 70.46 -

DAG-CNN (VGG) [91] 77.5 56.2

further with addition of more scales (82% with VGG, 4 patch sizes).

III.D.3 Task transfer performance

The next question is how object-to-scene transfer compares to the much

more intensive process, pursued by [95], of collecting a large scale labeled Places

scene dataset and training a deep CNN from it. The dataset, consists of 2.4M

images, from which the authors train both AlexNet and VGG Net CNNs were

trained for scene classification. The fully connected features from the networks are

used as scene representations and classified with linear SVMs on Indoor scenes and

SUN. The Places CNN features are a direct alternatives to the MFA-FS. While the

use of the former is an example of dataset transfer (features trained on scenes to

classify scenes) the use of the latter is an example of task transfer (features trained

on objects to classify scenes).

A comparison between the two transfer approaches is shown in table Ta-

ble III.7. Somewhat surprisingly, task transfer with the MFA-FS outperformed
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Table III.6 Comparison to task transfer methods (ImageNet CNNs) on MIT In-

door.
Method 1 scale mscale

AlexNet
MFA-FS 71.11 73.58

FV+FC [12] - 71.6
Sparse Coding [54] 68.2 -

VGG

MFA-FS 79.9 81.43
Sparse Coding [55] - 77.6

H-Sparse [55] - 79.5
BN [25] 77.55 -

FV+FC [12] - 81.0

VGG + dim. reduction

MFA-FS + PCA (5k) 79.3 -
BN (8k) [25] 76.17 -

dataset transfer with the Places CNN, on both MIT Indoors and SUN and for

both the AlexNet and VGG architectures. This supports the hypothesis that the

variability of configurations of most scenes makes scene classification much harder

than object recognition, to the point where CNN architectures that have close-to or

above human performance for object recognition are much less effective for scenes.

It is, instead, preferable to pool object detections across the scene image, using

a pooling mechanism such as the MFA-FS. We also show that the object-based

MFA-FS and the scene-based representation from Places CNN are complementary

in nature. When we train a classifier on a concatenation of the two descriptors, the

performance improves by about 6− 8% which is significant margin. The improve-

ments are observed while using both the AlexNet and the VGG CNN architectures

on both MIT Indoor and SUN datasets. To the best of our knowledge, no method

using these or deeper CNNs has reported better results than the combined MFA-FS

and Places VGG features of Table Table III.7.

It could be argued that this improvement is just an effect of the often

observed benefits of fusing different classifiers. Many works even resort to “bag-
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Table III.7 Comparison with the Places trained Scene CNNs.
Method SUN Indoor

AlexNet

MFA-FS 55.95 73.58
Places 54.3 68.24

Combined 63.16 79.86

VGG

MFA-FS 63.31 81.43
Places 61.32 79.47

Combined 71.06 87.23

AlexNet + VGG

Places (VGG + Alex) 65.91 81.29
MFA-FS(Alex) + Places(VGG) 68.8 85.6
MFA-FS(VGG) + Places(Alex) 67.34 82.82

ging” of multiple CNNs to achieve performance improvements [75]. To test this

hypothesis we also implemented a classifier that combines two Places CNNs with

the AlexNet and VGG architectures. This is shown as Places (VGG+AlexNet) in

the last section of Table Table III.7. While improving on the performance of both

MFA-FS and Places, its performance is not as good as that of the combination of

the object-based and scene-based representations (MFA-FS + Places). As shown

in the remainder of the last section of the table, any combination of an object CNN

with MFA-FS based transfer and a scene CNN outperforms this classifier.

Finally, table Table III.5 compares results to the best recent scene classi-

fication methods in the literature. This comparison shows that MFA-FS + Places

combination is a state-of-the-art classifier with substantial gains over all other pro-

posals. The results of 71.06% on SUN and 87.23% on Indoor scenes substantially

outperform the previous best results reported on both scene datasets.

III.E Conclusion

Object based scene representation was addressed with traditional GMM

FV in Chapter II, which we have shown to be very ineffective for the high-
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Table III.8 Classification accuracy (K = 50, R = 10).

Descriptor MIT Indoor SUN
GMM FV (µ) 66.08 50.01
GMM FV (σ) 53.86 37.71
MFA FS (µ) 67.68 51.43
MFA FS (Λ) 71.11 53.38

dimensional CNN features. The reason is the limited flexibility of the GMM in

modeling feature covariances. We have addressed this problem by adopting a bet-

ter model, the MFA, which approximates the non-linear data manifold by a set of

local sub-spaces. We then introduced the Fisher score with respect to this model,

denoted as the MFA-FS. Through extensive experiments, we have shown that the

MFA-FS has state of the art performance for object-to-scene transfer and this

transfer actually outperforms a scene CNN trained on a large scene dataset. These

results are significant given that 1) MFA training takes only a few hours versus

training a CNN, and 2) transfer requires a much smaller scene dataset.
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Chapter IV

Attribute Trajectory Transfer for

Data Augmentation
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IV.A Introduction

Convolutional neural networks (CNNs), trained on large scale data, have

significantly advanced the state-of-the-art on traditional vision problems such as

object recognition [44, 75, 80] and object detection [28, 68]. Success of these net-

works is mainly due to their high selectivity for semantically meaningful visual

concepts, e. g., objects and object parts [72]. In addition to ensuring good perfor-

mance on the problem of interest, this property of CNNs also allows for transfer

of knowledge to several other vision tasks [19, 31, 12, 18]. The object recognition

network of [44], e. g., has been successfully used for object detection [28, 68], scene

classification [31, 18], texture classification [12] and domain adaptation [19], using

various transfer mechanisms.

CNN-based transfer is generally achieved either by finetuning a pre-

trained network, such as in [44], on a new image dataset or by designing a new

image representation on such a dataset based on the activations of the pre-trained

network layers [19, 31, 18, 12]. Recent proposals of transfer have shown highly

competitive performance on different predictive tasks with a modest amount of

new data (as few as 50 images per class). The effectiveness of transfer-based meth-

ods, however, has not yet been tested under more severe constraints such as in a

few-shot or a one-shot learning scenario. In these problems, the number of exam-

ples available for learning may be as few as one per class. Fine-tuning a pre-trained

CNN with millions of parameters to such inadequate datasets is clearly not a vi-

able option. A one-shot classifier trained on CNN activations will also be prone to

over-fitting due to the high dimensionality of the feature space. The only way to

solve the problem of limited data is to augment the training corpus by obtaining

more examples for the given classes.

While augmentation techniques can be as simple as flipping, rotating,

adding noise, or extracting random crops from images [44, 11, 93], task-specific,

or guided augmentation strategies [10, 34, 70, 60] have the potential to generate
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Figure IV.1 Given a predictor γ : X → R+ of some object attribute (e. g., depth

or pose), we propose to learn a mapping of object features x ∈ X , such that (1)

the new synthetic feature x̂ is “close” to x (to preserve object identity) and (2) the

predicted attribute value γ(x̂) = t̂ of x̂ matches a desired object attribute value

t, i. e., t − t̂ is small. In this illustration, we learn a mapping for features with

associated depth values in the range of 1-2 [m] to t = 3 [m] and apply this mapping

to an instance of a new object class. In our approach, this mapping is learned in an

object-agnostic manner. With respect to our example, this means that all training

data from ‘chairs’ and ‘tables’ is used to a learn feature synthesis function φ.
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more realistic synthetic samples. This is a particularly important issue, since per-

formance of CNNs heavily relies on sufficient coverage of the variability that we

expect in unseen testing data. In scene recognition, we desire, for example, suf-

ficient variability in the constellation and transient states of scene categories (c.

f. [45]), whereas in object recognition, we desire variability in the specific incar-

nations of certain objects, lighting conditions, pose, or depth, just to name a few.

Unfortunately, this variability is often dataset-specific and can cause substantial

bias in recognition results [82].

An important observation in the context of our work is that augmentation

is typically performed on the image, or video level. While this is not a problem

with simple techniques, such as flipping or cropping, it can become computationally

expensive if more elaborate augmentation techniques are used. We argue that, in

specific problem settings, augmentation might as well be performed in feature space,

especially in situations where features are input to subsequent learning steps. This

is common, e. g., in recognition tasks, where the softmax output of trained CNNs

is often not used directly, but activations at earlier layers are input to an external

discriminant classifier.

Contribution. We propose an approach to augment the training set with feature

descriptors instead of images. Specifically, we advocate an augmentation technique

that learns to synthesize features, guided by desired values for a set of object

attributes, such as depth or pose. An illustration of this concept is shown in

Fig. Figure IV.1. We first train a fast RCNN [28] detector to identify objects in

2D images. This is followed by training a neural network regressor which predicts

the 3D attributes of a detected object, namely its depth from the camera plane

and pose. An encoder-decoder network is then trained which, for a detected object

at a certain depth and pose, will “hallucinate” the changes in its RCNN features

for a set of desired depths/poses. Using this architecture, for a new image, we

are able to augment existing feature descriptors by an auxiliary set of features

that correspond to the object changing its 3D position. Since our framework
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relies on object attributes to guide augmentation, we refer to it as attribute-guided

augmentation (AGA).

Organization. Sec. IV.B reviews prior work. Sec. IV.C introduces the proposed

encoder-decoder architecture for attribute-guided augmentation. Sec. IV.D stud-

ies the building blocks of this approach in detail and demonstrates that AGA in

feature space improves one-shot object recognition and object-based scene recog-

nition performance on previously unseen classes. Sec. IV.E concludes the paper

with a discussion and an outlook on potential future directions.

IV.B Related work

Our review of related work primarily focuses on data augmentation strate-

gies. While many techniques have been proposed in the context of training deep

neural networks to avoid over-fitting and to increase variability in the data, other

(sometimes closely related) techniques have previously appeared in the context

of one-shot and transfer learning. We can roughly group existing techniques into

(1) generic, computationally cheap approaches and (2) task-specific, or guided

approaches that are typically more computationally involved.

As a representative of the first group, Krizhevsky et. al. [44] leverage

a set of label-preserving transformations, such as patch extraction + reflections,

and PCA-based intensity transformations, to increase training sample size. Similar

techniques are used by Zeiler and Fergus [93]. In [11], Chatfield and Zisserman

demonstrate that the augmentation techniques of [44] are not only beneficial for

training deep architectures, but shallow learning approaches equally benefit from

such simple and generic schemes.

In the second category of guided-augmentation techniques, many ap-

proaches have recently been proposed. In [10], e. g., Charalambous and Bharath

employ guided-augmentation in the context of gait recognition. The authors sug-

gest to simulate synthetic gait video data (obtained from avatars) with respect to
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various confounding factors (such as clothing, hair, etc.) to extend the training

corpus. Similar in spirit, Rogez and Schmid [70] propose an image-based synthesis

engine for augmenting existing 2D human pose data by photorealistic images with

greater pose variability. This is done by leveraging 3D motion capture (MoCap)

data. In [60], Peng et. al. also use 3D data, in the form of CAD models, to render

synthetic images of objects (with varying pose, texture, background) that are then

used to train CNNs for object detection. It is shown that synthetic data is ben-

eficial, especially in situations where few (or no) training instances are available,

but 3D CAD models are. Su et. al. [78] follow a similar pipeline of rendering im-

ages from 3D models for viewpoint estimation, however, with substantially more

synthetic data obtained, e. g., by deforming existing 3D models before rendering.

Another (data-driven) guided augmentation technique is introduced by

Hauberg et. al. [34]. The authors propose to learn class-specific transformations

from external training data, instead of manually specifying transformations as

in [44, 93, 11]. The learned transformations are then applied to the samples of

each class. Specifically, diffeomorphisms are learned from data and encouraging

results are demonstrated in the context of digit recognition on MNIST. Notably,

this strategy is conceptually similar to earlier work by Miller et. al. [57] on one-

shot learning, where the authors synthesize additional data for digit images via

an iterative process, called congealing. During that process, external images of a

given category are aligned by optimizing over a class of geometric transforms (e.

g., affine transforms). These transformations are then applied to single instances

of the new classes to increase data for one-shot learning.

Marginally related to our work, we remark that alternative approaches to

implicitly learn spatial transformations have been proposed. For instance, Jader-

berg et. al. [38] introduce spatial transformer modules that can be injected into

existing deep architectures to implicitly capture spatial transformations inherent

in the data, thereby improving invariance to this class of transformations.

While all previously discussed methods essentially propose image-level
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augmentation to train CNNs, our approach is different in that we perform aug-

mentation in feature space. Along these lines, the approach of Kwitt et. al. [45]

is conceptually similar to our work. In detail, the authors suggest to learn how

features change as a function of the strength of certain transient attributes (such

as sunny, cloudy, or foggy) in a scene-recognition context. These models are then

transferred to previously unseen data for one-shot recognition. There are, however,

two key differences between their approach and ours. First, they require datasets

labeled with attribute trajectories, i. e., all variations of an attribute for every

instance of a class. We, on the other hand, make use of conventional datasets that

seldom carry such extensive labeling. Second, their augmenters are simple linear

regressors trained in a scene-class specific manner. In contrast, we learn deep

non-linear models in a class-agnostic manner which enables a straightforward ap-

plication to recognition in transfer settings.

IV.C Architecture

Notation. To describe our architecture, we let X denote our feature space,

x ∈ X ⊂ RD denotes a feature descriptor (e. g., a representation of an object) and

A denotes a set of attributes that are available for objects in the external training

corpus. Further, we let s ∈ R+ denote the value of an attribute A ∈ A, associated

with x. We assume (1) that this attribute can be predicted by an attribute regres-

sor γ : X → R+ and (2) that its range can be divided into I intervals [li, hi], where

li, hi denote the lower and upper bounds of the i-th interval. The set of desired

object attribute values is {t1, . . . , tT}.

Objective. On a conceptual level, we aim for a synthesis function φ which, given

a desired value t for some object attribute A, transforms the object features x ∈ X

such that the attribute strength changes in a controlled manner to t. More formally,

we aim to learn

φ : X × R+ → X , (x, t) 7→ x̂, s.t. γ(x̂) ≈ t . (IV.1)
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Since, the formulation in Eq. (IV.1) is overly generic, we constrain the problem to

the case where we learn different φki for a selection of intervals [li, hi] within the

range of attribute A and a selection of T desired object attribute values tk. In

our illustration of Fig. Figure IV.1, e. g., we have one interval [l, h] = [1, 2] and

one attribute (depth) with target value 3[m]. While learning separate synthesis

functions simplifies the problem, it requires a good a-priori attribute (strength)

predictor, since, otherwise, we could not decide which φki to use. During testing, we

(1) predict the object’s attribute value from its original feature x, i. e., γ(x) = t̂,

and then (2) synthesize additional features as x̂ = φki (x) for k = 1, . . . , T . If

t̂ ∈ [li, hi] ∧ tk /∈ [li, hi], φ
k
i is used. Next, we discuss each component of this

approach in detail.

IV.C.1 Attribute regression

An essential part of our architecture is the attribute regressor γ : X → R+

for a given attribute A. This regressor takes as input a feature x and predicts its

strength or value, i. e., γ(x) = t̂. While γ could, in principle, be implemented by a

variety of approaches, such as support vector regression [21] or Gaussian processes

[9], we use a two-layer neural network instead, to accomplish this task. This is not

an arbitrary choice, as it will later enable us to easily re-use this building block in

the learning stage of the synthesis function(s) φki . The architecture of the attribute

regressor is shown in Fig. Figure IV.2, consisting of two linear layers, interleaved

by batch normalization (BN) [36] and rectified linear units (ReLU) [59]. While this

architecture is admittedly simple, adding more layers did not lead to significantly

better results in our experiments. Nevertheless, the design of this component is

problem-specific and could easily be replaced by more complex variants, depending

on the characteristics of the attributes that need to be predicted.

Learning. The attribute regressor can easily be trained from a collection of N

training tuples {(xi, si)}Ni=1 for each attribute. As the task of the attribute regressor

is to predict in which interval the original feature x resides, we do not need to
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Figure IV.2 Architecture of the attribute regressor γ.

organize the training data into intervals in this step.

IV.C.2 Feature regression

To implement1 φ, we design an encoder-decoder architecture, reminiscent

of a conventional autoencoder [3]. Our objective, however, is not to encode and

then reconstruct the input, but to produce an output that resembles a feature

descriptor of an object at a desired attribute value.

In other words, the encoder essentially learns to extract the essence of

features; the decoder then takes the encoding and decodes it to the desired result.

In general, we can formulate the optimization problem as

min
φ∈C

L(x, t;φ) = (γ(φ(x))− t)2 , (IV.2)

where the minimization is over a suitable class of functions C. Notably, when

implementing φ as an encoder-decoder network with an appended (pre-trained)

attribute predictor (see Fig. Figure IV.3) and loss (γ(φ(x)) − t)2, we have little

control over the decoding result in the sense that we cannot guarantee that the

identity of the input is preserved. This means that features from a particular

object class might map to features that are no longer recognizable as this class, as

the encoder-decoder will only learn to “fool” the attribute predictor γ. For that

reason, we add a regularizer to the objective of Eq. (IV.2), i. e., we require the

decoding result to be close, e. g., in the 2-norm, to the input. This changes the

1We omit the sub-/superscripts for readability.
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optimization problem of Eq. (IV.2) to

min
φ∈C

L(x, t;φ) = (γ(φ(x))− t)2︸ ︷︷ ︸
Mismatch penalty

+λ ‖φ(x)− x‖2︸ ︷︷ ︸
Regularizer

. (IV.3)

Interpreted differently, this resembles the loss of an autoencoder network with

an added target attribute mismatch penalty. The encoder-decoder network that

implements the function class C to learn φ is shown in Fig. Figure IV.3. The core

building block is a combination of a linear layer, batch normalization, ELU [13],

followed by dropout [77]. After the final linear layer, we add one ReLU layer to

enforce x̂ ∈ RD
+ .

Learning. Training the encoder-decoder network of Fig. Figure IV.3 requires an

a-priori trained attribute regressor γ for each given attribute A ∈ A. During

training, this attribute regressor is appended to the network and its weights are

frozen. Hence, only the encoder-decoder weights are updated. To train one φki for

each interval [li, hi] of the object attribute range and a desired object attribute

value tk, we partition the training data from the external corpus into subsets

Si, such that ∀(xn, sn) ∈ Si : sn ∈ [li, hi]. One φki is learned from Si for each

desired object attribute value tk. As training is in feature space X , we have

no convolutional layers and consequently training is computationally cheap. For

testing, the attribute regressor is removed and only the trained encoder-decoder

network (implementing φki ) is used to synthesize features. Consequently, given |A|

attributes, I intervals per attribute and T target values for an object attribute, we

obtain |A| · I · T synthesis functions.

IV.D Experiments

We first discuss the generation of adequate training data for the encoder-

decoder network, then evaluate every component of our architecture separately and

eventually demonstrate its utility on (1) one-shot object recognition in a transfer

learning setting and (2) one-shot scene recognition.
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Figure IV.3 Illustration of the proposed encoder-decoder network for AGA. During

training, the attribute regressor γ is appended to the network, whereas, for testing

(i. e., feature synthesis) this part is removed. When learning φki , the input x is

such that the associated attribute value s is within [li, hi] and one φki is learned

per desired attribute value tk.

Dataset. We use the SUN RGB-D dataset from Song et. al. [76]. This dataset

contains 10335 RGB images with depth maps, as well as detailed annotations for

more than 1000 objects in the form of 2D and 3D bounding boxes. In our setup,

we use object depth and pose as our attributes, i. e., A = {Depth, Pose}. For

each ground-truth 3D bounding box, we extract the depth value at its centroid and

obtain pose information as the rotation of the 3D bounding box about the vertical

y-axis. In all experiments, we use the first 5335 images as our external database,

75



i. e., the database for which we assume availability of attribute annotations. The

remaining 5000 images are used for testing; more details are given in the specific

experiments.

Training data. Notably, in SUN RGB-D, the number of instances of each object

class are not evenly distributed, simply because this dataset was not specifically

designed for object recognition tasks. Consequently, images are also not object-

centric, meaning that there is substantial variation in the location of objects, as

well as the depth and pose at which they occur. This makes it difficult to extract

a sufficient and balanced number of feature descriptors per object class, if we

would only use the ground-truth bounding boxes to extract training data. We

circumvent this problem by leveraging the fast RCNN detector of [28] with object

proposals generated by Selective Search [84]. In detail, we finetune the ImageNet

model from [28] to SUN RGB-D, using the same 19 objects as in [76]. We then

run the detector on all images from our training split and keep the proposals with

detection scores > 0.7 and a sufficient overlap (measured by the IoU >0.5) with

the 2D ground-truth bounding boxes. This is a simple augmentation technique to

increase the amount of available training data. The associated RCNN activations

(at the FC7 layer) are then used as our features x. Each proposal that remains

after overlap and score thresholding is annotated by the attribute information of

the corresponding ground-truth bounding box in 3D. As this strategy generates a

larger number of descriptors (compared to the number of ground-truth bounding

boxes), we can evenly balance the training data in the sense that we can select

an equal number of detections per object class to train (1) the attribute regressor

and (2) the encoder-decoder network. Training data generation is illustrated in

Fig. Figure IV.4 on four example images.

Implementation. The attribute regressor and the encoder-decoder network are

implemented in Torch. All models are trained using Adam [42]. For the attribute

regressor, we train for 30 epochs with a batch size of 300 and a learning rate

of 0.001. The encoder-decoder network is also trained for 30 epochs with the
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Figure IV.4 Illustration of training data generation. First, we obtain fast RCNN

[28] activations (FC7 layer) of Selective Search [84] proposals that overlap with 2D

ground-truth bounding boxes (IoU > 0.5) and scores > 0.7 (for a particular object

class) to generate a sufficient amount of training data. Second, attribute values (i.

e., depth D and pose P) of the corresponding 3D ground-truth bounding boxes

are associated with the proposals (best-viewed in color).
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same learning rate, but with a batch size of 128. The dropout probability during

training is set to 0.25. No dropout is used for testing. For our classification

experiments, we use a linear C-SVM, as implemented in liblinear [22]. On a

Linux system, running Ubuntu 16.04, with 128 GB of memory and one NVIDIA

Titan X, training one model (i. e., one φki ) takes ≈ 30 seconds. The relatively low

demand on computational resources highlights the advantage of AGA in feature

space, as no convolutional layers need to be trained. All trained models+source

code are publicly available online2.

IV.D.1 Attribute regression

While our strategy, AGA, to data augmentation is agnostic to the ob-

ject classes, in both the training and testing dataset, it is interesting to compare

attribute prediction performance to the case where we train object-specific regres-

sors. In other words, we compare object-agnostic training to training one regressor

γj, j ∈ {1, . . . , |S|} for each object class in S. This allows us to quantify the po-

tential loss in prediction performance in the object-agnostic setting.

Table Table IV.1 lists the median-absolute-error (MAE) of depth (in [m])

and pose (in [deg]) prediction per object. We train on instances of 19 object

classes (S) in our training split of SUN RGB-D and test on instances of the same

object classes, but extracted from the testing split. As we can see, training in

an object-specific manner leads to a lower MAE overall, both for depth and pose.

This is not surprising, since the training data is more specialized to each particular

object, which essentially amounts to solving simpler sub-problems. However, in

many cases, especially for depth, the object-agnostic regressor performs on par,

except for object classes with fewer training samples (e. g., door). We also remark

that, in general, pose estimation from 2D data is a substantially harder problem

than depth estimation (which works remarkably well, even on a per-pixel level, c.

f. [53]). Nevertheless, our recognition experiments (in Secs. IV.D.3 and IV.D.4)

2https://github.com/rkwitt/GuidedAugmentation
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Object
D (MAE [m]) P (MAE [deg])

per-object agnostic per-object agnostic
bathtub 0.23 0.94 37.97 46.85

bed 0.39 0.30 44.36 42.59
bookshelf 0.57 0.43 52.95 41.41

box 0.55 0.51 27.05 38.14
chair 0.37 0.31 37.90 32.86

counter 0.54 0.62 40.16 52.35
desk 0.41 0.36 48.63 41.71
door 0.49 1.91 52.73 102.23

dresser 0.32 0.41 67.88 70.92
garbage bin 0.36 0.32 47.51 45.26

lamp 0.42 0.69 25.93 23.91
monitor 0.24 0.22 34.04 25.85

night stand 0.56 0.65 23.80 20.21
pillow 0.38 0.43 32.56 35.64

sink 0.20 0.19 56.52 45.75
sofa 0.40 0.33 34.36 34.51

table 0.37 0.33 41.31 37.30
tv 0.35 0.48 35.29 24.23

toilet 0.26 0.20 25.32 19.59
∅ 0.39 0.51 40.33 41.12

Table IV.1 Median-Absolute-Error (MAE), for depth / pose, of the attribute

regressor, evaluated on 19 objects from [76]. In our setup, the pose estimation

error quantifies the error in predicting a rotation around the z-axis. D indicates

Depth, P indicates Pose. For reference, the range of of the object attributes in

the training data is [0.2m, 7.5m] for Depth and [0◦, 180◦] for Pose. Results are

averaged over 5 training / evaluation runs.

show that even with mediocre performance of the pose predictor (due to symmetry

issues, etc.), augmentation along this dimension is still beneficial.

IV.D.2 Feature regression

We assess the performance of our regressor(s) φki , shown in Fig. Fig-

ure IV.3, that are used for synthetic feature generation. In all experiments, we

use an overlapping sliding window to bin the range of each attribute A ∈ A into I
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intervals [li, hi]. In case of Depth, we set [l0, h0] = [0, 1] and shift each interval by

0.5 meter; in case of Pose, we set [l0, h0] = [0◦, 45◦] and shift by 25◦. We generate

as many intervals as needed to cover the full range of the attribute values in the

training data. The bin-width / step-size were set to ensure a roughly equal num-

ber of features in each bin. For augmentation, we choose 0.5, 1, . . . ,max(Depth)

as target attribute values for Depth and 45◦, 70◦, . . . , 180◦ for Pose. This results

in T = 11 target values for Depth and T = 7 for Pose.

We use two separate evaluation metrics to assess the performance of φki .

First, we are interested in how well the feature regressor can generate features

that correspond to the desired attribute target values. To accomplish this, we run

each synthetic feature x̂ through the attribute predictor and assess the MAE, i.

e., |γ(x̂)− t|, over all attribute targets t. Table Table IV.2 lists the average MAE,

per object, for (1) features from object classes that were seen in the training data

and (2) features from objects that we have never seen before. As wee can see from

Table Table IV.2, MAE’s for seen and unseen objects are similar, indicating that

the encoder-decoder has learned to synthesize features, such that γ(x̂) ≈ t.

Second, we are interested in how much synthesized features differ from

original features. While we cannot evaluate this directly (as we do not have data

from one particular object instance at multiple depths and poses), we can assess

how “close” synthesized features are to the original features. The intuition here

is that closeness in feature space is indicative of an object-identity preserving

synthesis. In principle, we could simply evaluate ‖φki (x) − x‖2, however, the 2-

norm is hard to interpret. Instead, we compute the Pearson correlation coefficient

ρ between each original feature and its synthesized variants, i. e., ρ(x, φki (x)). As ρ

ranges from [−1, 1], high values indicate a strong linear relationship to the original

features. Results are reported in Table Table IV.2. Similar to our previous results

for MAE, we observe that ρ, when averaged over all objects, is slightly lower for

objects that did not appear in the training data. This decrease in correlation,

however, is relatively small.
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Object ρ D (MAE [m]) ρ P (MAE [deg])

Seen

bathtub 0.75 0.10 0.68 3.99
bed 0.81 0.07 0.82 3.30

bookshelf 0.80 0.06 0.79 3.36
box 0.74 0.08 0.74 4.44

chair 0.73 0.07 0.71 3.93
counter 0.76 0.08 0.77 3.90

desk 0.75 0.07 0.74 3.93
door 0.67 0.10 0.63 4.71

dresser 0.79 0.08 0.77 4.12
garbage bin 0.76 0.07 0.76 5.30

lamp 0.82 0.08 0.79 4.83
monitor 0.82 0.06 0.80 3.34

night stand 0.80 0.07 0.78 4.00
pillow 0.80 0.08 0.81 3.87

sink 0.75 0.11 0.76 4.00
sofa 0.78 0.08 0.78 4.29

table 0.75 0.07 0.74 4.10
tv 0.78 0.08 0.72 4.66

toilet 0.80 0.10 0.81 3.70
∅ 0.77 0.08 0.76 4.10

Unseen

picture 0.67 0.08 0.65 5.13
ottoman 0.70 0.09 0.70 4.41

whiteboard 0.67 0.12 0.65 4.43
fridge 0.69 0.10 0.68 4.48

counter 0.76 0.08 0.77 3.98
books 0.74 0.08 0.73 4.26
stove 0.71 0.10 0.71 4.50

cabinet 0.74 0.09 0.72 3.99
printer 0.73 0.08 0.72 4.59

computer 0.81 0.06 0.80 3.73
∅ 0.72 0.09 0.71 4.35

Table IV.2 Assessment of φki w. r. t. (1) Pearson correlation (ρ) of synthesized and

original features and (2) mean MAE of predicted attribute values of synthesized

features, γ(φki (x)), w. r. t. the desired attribute values t. D indicates Depth-aug.

features (MAE in [m]); P indicates Pose-aug. features (MAE in [deg]).

In summary, we conclude that these results warrant the use of φki on

feature descriptors from object classes that have not appeared in the training

corpus. This enables us to test φki in transfer learning setups, as we will see in the
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following one-shot experiments of Secs. IV.D.3 and IV.D.4.

IV.D.3 One-shot object recognition

First, we demonstrate the utility of our approach on the task of one-

shot object recognition in a transfer learning setup. Specifically, we aim to learn

attribute-guided augmenters φki from instances of object classes that are available

in an external, annotated database (in our case, SUN RGB-D). We denote this

collection of object classes as our source classes S. Given one instance from a

collection of completely different object classes, denoted as the target classes T ,

we aim to train a discriminant classifier C on T , i. e., C : X → {1, . . . , |T |}. In

this setting, S ∩T = ∅. Note that no attribute annotations for instances of object

classes in T are available. This can be considered a variant of transfer learning,

since we transfer knowledge from object classes in S to instances of object classes

in T , without any prior knowledge about T .

Setup. We evaluate one-shot object recognition performance on three collections

of previously unseen object classes in the following setup: First, we randomly

select two sets of 10 object classes and ensure that each object class has at least

100 samples in the testing split of SUN RGB-D. We further ensure that no object

class is in S. This guarantees (1) that we have never seen the image, nor (2)

the object class during training. Since, SUN RGB-D does not have object-centric

images, we use the ground-truth bounding boxes to obtain the actual object crops.

This allows us to tease out the benefit of augmentation without having to deal

with confounding factors such as background noise. The two sets of object classes

are denoted T1
3 and T2

4. We additionally compile a third set of target classes

T3 = T1 ∪ T2 and remark that T1 ∩ T2 = ∅. Consequently, we have two 10-class

problems and one 20-class problem. For each object image in Ti, we then collect

RCNN FC7 features.

As a Baseline, we “train” a linear C-SVM (on 1-norm normalized features)

3T1 = {picture, whiteboard, fridge, counter, books, stove, cabinet, printer, computer, ottoman}
4T2 = {mug, telephone, bowl, bottle, scanner, microwave, coffee table, recycle bin, cart, bench}
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Baseline AGA+D AGA+P AGA+D+P
One-shot

T1 (10) 33.74 38.32 X 37.25 X 39.10 X
T2 (10) 23.76 28.49 27.15 X 30.12 X
T3 (20) 22.84 25.52 X 24.34 X 26.67 X

Five-shot
T1 (10) 50.03 55.04 X 53.83 X 56.92 X
T2 (10) 36.76 44.57 X 42.68 X 47.04 X
T3 (20) 37.37 40.46 X 39.36 X 42.87 X

Table IV.3 Recognition accuracy (over 500 trials) for three object recognition tasks;

top: one-shot, bottom: five-shot. Numbers in parentheses indicate the #classes.

A ’X’ indicates that the result is statistically different (at 5% sig.) from the

Baseline. +D indicates adding Depth-aug. features to the one-shot instances; +P

indicates addition of Pose-aug. features and +D, P denotes adding a combination

of Depth-/Pose-aug. features.

using only the single instances of each object class in Ti (SVM cost fixed to 10).

Exactly the same parameter settings of the SVM are then used to train on the

single instances + features synthesized by AGA. We repeat the selection of one-shot

instances 500 times and report the average recognition accuracy. For comparison,

we additionally list 5-shot recognition results in the same setup.

Remark. The design of this experiment is similar to [60, Section 4.3.], with the

exceptions that we (1) do not detect objects, (2) augmentation is performed in

feature space and (3) no object-specific information is available. The latter is

important, since [60] assumes the existence of 3D CAD models for objects in Ti
from which synthetic images can be rendered. In our case, augmentation does not

require any a-priori information about the objects classes.

Results. Table Table IV.3 lists the classification accuracy for the different sets

of one-shot training data. First, using original one-shot instances augmented by

Depth-guided features (+D); second, using original features + Pose-guided fea-

tures (+P) and third, a combination of both (+D, P); In general, we observe that

adding AGA-synthesized features improves recognition accuracy over the Baseline
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Figure IV.5 Illustration of the difference in gradient magnitude when backprop-

agating (through RCNN) the 2-norm of the difference between an original and a

synthesized feature vector for an increasing desired change in depth, i. e., 3[m] v.

s. 4[m] (middle) and 3[m] v. s. 4.5[m] (right).

in all cases. For Depth-augmented features, gains range from 3-5 percentage points,

for Pose-augmented features, gains range from 2-4 percentage points on average.

We attribute this effect to the difficulty in predicting object pose from 2D data,

as can be seen from Table Table IV.1. Nevertheless, in both augmentation set-

tings, the gains are statistically significant (w. r. t. the Baseline), as evaluated

by a Wilcoxn rank sum test for equal medians [27] at 5% significance (indicated

by ’X’ in Table Table IV.3). Adding both Depth- and Pose-augmented features

to the original one-shot features achieves the greatest improvement in recognition

accuracy, ranging from 4-6 percentage points. This indicates that information

from depth and pose is complementary and allows for better coverage of the fea-

ture space. Notably, we also experimented with the metric-learning approach of

Fink [24] which only led to negligible gains over the Baseline (e. g., 33.85% on

T1).

Feature analysis/visualization. To assess the nature of feature synthesis, we

backpropagate through RCNN layers the gradient w. r. t. the 2-norm between

an original and a synthesized feature vector. The strength of the input gradient

indicates how much each pixel of the object must change to produce a proportional

change in depth/pose of the sample. As can be seen in the example of Fig. Fig-
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ure IV.5, a greater desired change in depth invokes a stronger gradient on the

monitor. Second, we ran a retrieval experiment : we sampled 1300 instances of

10 (unseen) object classes (T1) and synthesized features for each instance w. r.

t. depth. Synthesized features were then used for retrieval on the original 1300

features. This allows to assess if synthesized features (1) allow to retrieve instances

of the same class (Top-1 acc.) and (2) of the desired attribute value. The latter

is measured by the coefficient of determination (R2). As seen in Table Table IV.4,

the R2 scores indicate that we can actually retrieve instances with the desired at-

tribute values. Notably, even in cases where R2 ≈ 0 (i. e., the linear model does

not explain the variability), the results still show decent Top-1 acc., revealing that

synthesis does not alter class membership.

Object Top-1 R2 Object Top-1 R2

picture 0.33 0.36 whiteboard 0.12 0.30
fridge 0.26 0.08 counter 0.64 0.18
books 0.52 0.07 stove 0.20 0.13

cabinet 0.57 0.27 printer 0.31 0.02
computer 0.94 0.26 ottoman 0.60 0.12

Table IV.4 Retrieval results for unseen objects (T1) when querying with synthesized

features of varying depth. Larger R2 values indicate a stronger linear relationship

(R2 ∈ [0, 1]) to the depth values of retrieved instances.

IV.D.4 Object-based one-shot scene recognition

Motivation. We can also use AGA for a different type of transfer, namely the

transfer from object detection networks to one-shot scene recognition. Although,

object detection is a challenging task in itself, significant progress is made, ev-

ery year, in competitions such as the ImageNet challenge. Extending the gains

in object detection to other related problems, such as scene recognition, is there-

fore quite appealing. A system that uses an accurate object detector such as an

RCNN [28] to perform scene recognition, could generate comprehensive annota-

tions for an image in one forward pass. An object detector that supports one-shot
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Method Accuracy [%]
max. pool (Baseline) 13.97
AGA FV (+D) 15.13
AGA FV (+P) 14.63
AGA CL-1 (+D, max.) 16.04
AGA CL-2 (+P, max.) 15.52
AGA CL-3 (+D, +P, max.) 16.32
Sem-FV [18] 32.75
AGA Sem-FV 34.36
Places [95] 51.28
AGA Places 52.11

Table IV.5 One-shot classification on 25 indoor scene classes [63]: {auditorium,

bakery, bedroom, bookstore, children room, classroom, computer room, concert

hall, corridor, dental office, dining room, hospital room, laboratory, library, living

room, lobby, meeting room, movie theater, nursery, office, operating room, pantry,

restaurant}. For Sem-FV [18], we use ImageNet CNN features extracted at one

image scale.

scene recognition could do so with the least amount of additional data. It must

be noted that such systems are different from object recognition based methods

such as [31, 18, 12], where explicit detection of objects is not necessary. They ap-

ply filters from object recognition CNNs to several regions of images and extract

features from all of them, whether or not an object is found. The data available

to them is therefore enough to learn complex descriptors such as Fisher vectors

(FVs). A detector, on the other hand, may produce very few features from an im-

age, based on the number of objects found. AGA is tailor-made for such scenarios

where features from an RCNN-detected object can be augmented.

Setup. To evaluate AGA in this setting, we select a 25-class subset of MIT In-

door [63], which may contain objects that the RCNN is trained for. The reason for

this choice is our reliance on a detection CNN, which has a vocabulary of 19 objects

from SUN RGB-D. At present, this is the largest such dataset that provides ob-

jects and their 3D attributes. The system can be extended easily to accommodate

more scene classes if a larger RGB-D object dataset becomes available. As the
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RCNN produces very few detections per scene image, the best approach, without

augmentation, is to perform pooling of RCNN features from proposals into a fixed-

size representation. We used max-pooling as our baseline. Upon augmentation,

using predicted depth/ pose, an image has enough RCNN features to compute a

GMM-based FV. For this, we use the experimental settings in [18]. The FVs are

denoted as AGA FV(+D) and AGA FV(+P), based on the attribute used to guide the

augmentation. As classifier, we use a linear C-SVM with fixed parameter (C).

Results. Table Table IV.5 lists the avgerage one-shot recognition accuracy over

multiple iterations. The benefits of AGA are clear, as both aug. FVs perform

better than the max-pooling baseline by 0.5-1% points. Training on a combination

(concatenated vector) of the augmented FVs and max-pooling, denoted as AGA

CL-1, AGA CL-2 and AGA CL-3 further improves by about 1-2% points. Finally, we

combined our aug. FVs with the state-of-the-art semantic FV of [18] and Places

CNN features [95] for one-shot classification. Both combinations, denoted AGA

Sem-FV and AGA Places, improved by a non-trivial margin (∼1% points).

IV.E Discussion

We presented an approach toward attribute-guided augmentation in fea-

ture space. Experiments show that object attributes, such as pose / depth, are

beneficial in the context of one-shot recognition, i. e., an extreme case of limited

training data. Notably, even in case of mediocre performance of the attribute re-

gressor (e. g., on pose), results indicate that synthesized features can still supply

useful information to the classification process. While we do use bounding boxes to

extract object crops from SUN RGB-D in our object-recognition experiments, this

is only done to clearly tease out the effect of augmentation. In principle, as our

encoder-decoder is trained in an object-agnostic manner, no external knowledge

about classes is required.

As SUN RGB-D exhibits high variability in the range of both attributes,
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augmentation along these dimensions can indeed help classifier training. However,

when variability is limited, e. g., under controlled acquisition settings, the gains

may be less apparent. In that case, augmentation with respect to other object

attributes might be required.

Two aspects are specifically interesting for future work. First, replac-

ing the attribute regressor for pose with a specifically tailored component will

potentially improve learning of the synthesis function(s) φki and lead to more real-

istic synthetic samples. Second, we conjecture that, as additional data with more

annotated object classes and attributes becomes available (e. g., [7]), the encoder-

decoder can leverage more diverse samples and thus model feature changes with

respect to the attribute values more accurately.
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Figure V.1 Map of CNN based transfer learning: across dataset, class and domains.

Our contributions are represented as “Semantic Representations” and “Semantic

Trajectory Transfer”. The former denotes contributions in Chapter II and Chapter

III, while latter denotes contributions made in Chapter IV.

It is well known that deep convolutional neural networks trained on large

scale vision datasets achieve spectacular results. A more important virtue of these

networks, perhaps, is their ability to capture information that is useful and trans-

ferable to other vision tasks. The entire spectrum of neural network based transfer

learning methods is represented by the figure Figure V.1. Consider, for example, a

CNN trained on object recognition. To use this network on the same set of object

classes, one can either deploy it in a zero-shot manner (in the inference mode) or

adapt it to a dataset of 1000s of images if the task is slight different (e.e. object

detection or localization). To use the same recognition network, instead, on a set
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of different, previously unseen, object categories, one can resort to finetuning the

recognition CNN to a moderate size dataset of new object classes. This method

of transfer is often employed in object detection literature [30, 29, 69]. In this

work, we propose solutions to two alternate scenarios of transfer learning where

the knowledge transfer must either be achieved using very few new data points

(few-shot transfer) or across to a completely different domain (from objects to

scenes).

As an example of transfer across visual domains, we choose the example

of object to scene transfer. We use off-the-shelf object recognition CNNs trained on

large scale datasets to generate a Bag-of-semantics (BoS) representation of scene

images. Under a BoS, a scene is described as a collection of object probability

multinomials obtained from its local regions. The probabilities are referred to as

semantics because of their inherent meaning (dog-ness or car-ness of a patch). We

propose to embed a scene BoS into an invariant scene representation known as

a semantic Fisher vector. The design of a Fisher vector (FV) embedding is not

very straight-forward in the space of multinomial probability vectors, due to its

non-Euclidean nature. We solve this problem by transforming the multinomials

into their natural parameter form, thereby projecting them into a Euclidean space

without any loss of their object selectivity. The semantic Fisher vectors derived

from the natural parameter space of object CNNs represents a conduit for object-

to-scene knowledge transfer. This representation combined with a simple linear

classifier, is shown to achieve state-of-the-art scene classification on well known

benchmarks. Next we, present a technique to improve the performance of seman-

tic transfer by perfecting the design of the classical Fisher vector embedding [62]

itself. These are generally derived as scores or gradients of a Gaussian mixture

model that uses a diagonal covariance matrix. While, this was never a problem

with low-dimensional feature spaces before, it may not be sufficient for high dimen-

sional CNN features. To cover the manifold of CNN features efficiently we propose

the use of mixture of factor analyzers (MFA) [26, 86], a model that locally approxi-
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mates the distribution with full-covariance Gaussians. We derive the Fisher vector

embedding under this model and show that it captures richer descriptor statistics

compared to a variance Gaussian. The MFA based Fisher vector improves the per-

formance of object based semantic scene classification as expected. Despite being a

transfer learning method with relatively modest data requirements ( 50 images per

class), we show that the MFA FV is comparable to even a scene classification CNN

trained from scratch on millions of new labeled images. When combined, the two

techniques also result in a surprising 6 − 8% improvement in accuracy. The pro-

posed object-based scene representations are denoted as semantic representations

on the transfer learning spectrum in fig. Figure V.1 and generally applicable to a

case when the categories in the target domain (e.g. scenes) are loose combinations

of those in source domain (e.g. objects).

We next, consider a situation when transfer learning must be achieved

with a very small target dataset with not more than 10 examples per class. We refer

to this as few-shot transfer. Despite the high quality of representations that can be

generated using an off-the-shelf neural network such as the ImageNet CNN [44],

such acute scarcity of new data prevents learning a sufficiently generalize-able

classifier for the new task. To solve the problem, we propose the idea of attribue

guided data augmentation. Standard data augmentation involves making flipped,

rotated or cropped copies of a training image in order to simulate a sufficient

training dataset. These copies however are very trivial and do not add any new

information. We propose to generate non-trivial data for few-shot or even one-shot

transfer learning with the help of attribute trajectory learning and transfer. Using

a small auxiliary dataset labeled with objects and their attributes (properties)

such as 3D pose and depth, we learn trajectories of variation in these attributes on

the feature space of a pre-trained CNN. For an image of a new, previously unseen

object (during transfer), its feature representation is obtained from the network

and regressed along the learned pose and depth trajectories to generate additional

features. This technique of attribute guided data augmentation helps us generate
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synthetic examples from original data, which helps improve the performance of one-

shot and few-shot object and scene recognition. The process of attribute guided

augmentation is alternatively denoted in fig Figure V.1 as semantic trajectory

transfer, since the generation of data requires transfer of trajectories of learned

variations to the new example.
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