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ABSTRACT OF THE THESIS

Automated Crowd-Counting System upon a Distributed Camera Network

by

Mulloy Morrow

Master of Science in Electrical Engineering
(Intelligent Systems, Robotics, and Control)

University of California, San Diego, 2012

Professor Nuno Vasconcelos, Chair

Automated and Distributed-Camera Crowd Analysis is an impressive and impor-

tant research challenge that has recently gained prominence in our society. Its applica-

tions include increased security and efficiency of public environments, research in herd

and flocking behavior, population monitoring, urban architecture, and also marketing.

However, there exists a striking difference between the environments where we deploy

and where we develop these analytics, resulting in non-robust analytics.

For the purpose of elucidating prevalent challenges faced by SVCL video crowd

analytics, we develop a scalable, distributed and automated research platform composed

of three sub-solutions: (1) Acquire data from a dynamic and distributed-camera environ-

ment; (2) Automatically compute crowd-count estimates based on privacy-preserving

xii



holistic motion segmentation; and (3) Visualize results geo-spatially and temporally on

interactive maps.

Rather than placing comparative-emphasis on computation methods, however,

we consider the influence and limitations our research community’s video databases

pose. Most pronounced is their static and finite nature, which may be a myopic char-

acteristic constricting our research efforts. Therefore, we contrast results and note the

added dynamic and long-term utility provided by our automated platform.

Our current video database yields geo-spatial real-time statistics of pedestrian

traffic as well as long-term temporal trends over a distributed and connected geographic

area. By designing a rich, scalable, and common experimental environment, we can

more rigorously evaluate machine vision techniques and crowd dynamics. Attention

may be shifted away from evaluation based solely on accuracy and more readily to-

wards the inclusion of technique break-down.
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1 Introduction

Our research project was conducted at the Statistical Visual Computing Labo-

ratory (SVCL) at UC San Diego. SVCL performs research in both fundamental and

applied problems in computer vision and machine learning. SVCL focuses on the

development of intelligent systems, which combine image-understanding capabilities

with any available additional information to enable sophisticated recognition and mod-

eling, amongst other tasks. Strong emphasis is given to formulations that can deal with

noise and uncertainty and solutions that are provably optimal under suitable optimality

criteria.[1]

One technique that followed this SVCL criteria, developed by SVCL alumnus

Prof. Antoni Chan, was the re-representation of video as a linear dynamic system (LDS);

a representation that has lent itself to robust and privacy-preserving event-recognition

and crowd-counting based on holistic motion.[2, 3, 4] (details in Chapter 3, Analysis

Methods.) This work produced a crowd analytics module and laid the foundation for

our automated crowd monitoring and surveillance system.

Automated crowd monitoring and surveillance is a very interesting challenge

for vision analytics of today. Albeit challenging, the computational foundations for

many useful solutions exist. Some of our environments that would benefit immediately

from automated crowd analytics include areas vulnerable to security threats from crowds

and/or terrorists such as schools, airports, walkways, sports facilities, hospitals, and

amusement parks. Furthermore, crowd analytics has very interesting and promising

applications in areas of research in herd and flocking behavior of animals, population

monitoring, entertainment, urban architecture, and also marketing. Both immediately in

our public lives and in our research communities, crowd analytics provides an interesting

avenue for automated monitoring, management, and safety.

1
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Naturally, robust and practical solutions necessitate a rich video corpus in which

to develop. However, a corpus requires information to be highly structured. In our

visual environment, structure with which to disentangle symbolic information is not as

apparent. We have not a highly structured written language analogue in the visual world

as we do in the audible. Despite this disadvantage, many highly specific solutions have

risen from the cataloging of common significant visual patterns. However, crowds exist

outside of these highly controlled and visually sterile environments. They exist in a

complex visual world, such as an airport. How do we begin to disentangle the plethora

of symbolic visual information? Furthermore, how do we do so scientifically so that

objective comparisons may be drawn between evaluations of unique solutions.

As we will discuss in subsection 1.1.2, in our science community there exist

conferences and workshops that solicit this discussion internationally and provide static

and closed datasets (corpora) as a common development and testing environment.

Here I introduce our usage of two terms: static and closed. Keeping in mind that

a visual corpus is composed of a set of structured visual data, we borrow the signal pro-

cessing term static to imply a sense that the information is unchanging in a temporally

local sense. Similarly, we borrow the physics term closed to imply the corpus contents

as comprising a system remain constant and finite.

To use a simple metaphor, inspecting the same group of ants in a Petri dish

defines a closed system. Although there may be a temporal component, our collection

of subjects is unchanging. Observing the ants outside in the dirt where ants may come

and go from our scope of observation describes an open environment. If we now turn

our attention to our observation device, perhaps a magnifying glass, static implies a

corpus developed using magnifying glass(es) with no change to their dimensions or

position. However, if our magnifying glass(es) were somehow able to change their

dimensions, this would alter the scope of our observation and give rise to a dynamic

corpus. At all times, we presume the ants remain ants and not transform into gorillas.

An equally fascinating animal with curious herding habits. However, our subjects and

their behavior, which we represent as visual signals, give rise to statistically stationary

patterns. Furthermore, the structure with which we catalog information in our corpus is

unchanging as well.
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To further characterize the majority of working databases in the community at

present, the approach thus far has been mostly bottom up, to focus on specialized fun-

damental problems and work our way outward to comprehensively survey the entire

visual universe, developing pattern disentanglement tools along the way. As we discuss

in subsection 1.1.1, this rather brute force development of a large and comprehensive

visual database is costly and only effective to the extent that our asexual algorithms may

be optimized to our finite corpora. Continuing on this endeavor, in subsection 1.1.2 we

follow another strategy based on a standardized multi-view database. The advantage of

this strategy is the ability to compare the performance of solutions in a rather fair and

normalized method that uncovers common as well as solution specific pitfalls.[5]

However, these pitfalls are little help without enough information to provide for

the statistical insight that would reflect their source. Furthermore, if our goal is also

to elucidate new challenges, a static database may not be expansive enough to include

sparse and/or subtle patterns. In other words, although this bottom up approach has

yielded many excellent practical solutions, we will discuss how this piecewise bottom-

up approach suffers from a systematic error leading to myopia and how our project seeks

to overcome these limitations. First, by paving the path to greater statistical insight from

the use of visual analytics on a real-time distributed surveillance system. And secondly,

by overcoming fundamental pitfalls to build robust crowd analytics.

In section 1.2, we will begin to discuss our general-purpose real-time analytics

platform and our approach to exploring strengths and weaknesses of our analytic mod-

ule; in particular uncovering novel and statistically significant obstacles to robustness.

Our goals with this insight are to reflect pitfalls in algorithm robustness as well as

elucidate new challenges for the visual analytics fields. This necessity for an improved

data source and testing platform comes at a time when our definitions of robustness

are too narrow in scope; particularly in contrast to biological analogues, which are a

growing inspiration.

This project 1) implements a platform for automated monitoring and surveil-

lance of crowded scenes, 2) provides a common experimental environment in which to

test crowd analytics continuously and in real-time, all while 3) overcoming common

limiting constraints such as static databases applicable only to specialized subsets of
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problems. This project paves a pathway for new and extended crowd analytic evalua-

tion, including: visualizing distributed crowd dynamics across an expansive spatial area

as well as temporally yielding trends over extended durations. Furthermore, this project

elucidates new avenues of crowd research such as 1) crowd interpolation of unmon-

itored network pathways, 2) object and person tracking across fields of view, and 3)

crowd analysis of areas with simultaneous multiple perspectives.

1.1 Prior Work

The discussion covering prior relevant work will be divided into two parts de-

scribing separate projects. In subsection 1.1.1, the first project consisted of crowd and

traffic database research and development followed by event recognition experiments.

In subsection 1.1.2, the second project turned into a IEEE paper submission and con-

sisted of event recognition and crowd counting results. This second project was a small

part of a larger project completed by SVCL Alumnus, Dr. Antoni Chan.

1.1.1 System I

We begin our endeavor with brute force, by attempting to create a large and di-

verse database consisting of both pedestrian and vehicular traffic via recording data with

a single camera and tripod. Subsequently, this data is used to perform event recognition

experiments, which will give us an idea of technique performance based on accuracy

and robustness.

In Figure 1.1 on page 5, there is a list of images representing classes of events and

accuracy results in predicting each based on techniques [2]. In most cases, 3 classes were

discriminated based on traffic level/congestion (i.e. high, medium, low). In Figure 1.1

row (d), the exception is an experiment containing 7 classes differentiated along vehic-

ular traffic-light system state (i.e. (a) north-through and south-through, (b) east-through

and west-through, (c) north-through and north-turning-left, and (d) south-through and

south-turning-left are four examples). In a significant number experiments, accuracy

drops to the 50% level, indicating robustness pitfalls. Due to numerous noise sources,

causes for pitfalls is inconclusive.
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(a)

82% Martin NN

82% State KL NN

83% State KL SVM

62% Image KL NN

87% Image KL SVM

(b)

70% Martin NN

71% State KL NN

73% State KL SVM

73% Image KL NN

72% Image KL SVM

(c)

56% Martin NN

54% State KL NN

57% State KL SVM

54% Image KL NN

55% Image KL SVM

(d)

83% Martin NN

84% State KL NN

82 % State KL SVM

68% Image KL NN

73% Image KL SVM

(e)

64% Martin NN

64% State KL NN

58% State KL SVM

62 % Image KL NN

70% Image KL SVM

( f )

84% Martin NN

83% State KL NN

89% State KL SVM

67% Image KL NN

87% Image KL SVM

Figure 1.1: Past Work - Event Recognition. Left two columns: examples of class differ-

ences. Right column: accuracy results.
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Reviewing the results, little was gained at a great cost of database authoring.

What was gained was insight of the arbitrariness of database design and the difficulty

in capturing pre-determined scenes without a full scale movie production team to con-

trol all aspects of the environment. In other words, in scripting experimentally-salient

scenes, there is a framing-out of many patterns, whether it be to minimize costly re-

sources or to reduce extraneous data considered noise.

The University of California San Diego campus contains a variety of pathways

and traffic scenarios, which provide an abundance of visual crowd patterns that the com-

puter vision and machine learning science communities have addressed. As such, the

campus provides for a good source of normal data for the development and comparing

of solutions. For anomalies, weekly and monthly events such as fairs, campus tours,

and the occasional protest provide interesting changes in crowd dynamics. At a finer

level, crowd dynamics are affected by the numerous golf carts in service and which are

allowed to use the same network of paths as pedestrians.

In addition to the thousands of visitors and staff on campus everyday, nearly

30 ·103 students are in attendance each quarter.[6] Although only a fraction of these stu-

dents are present on campus at any instance of time, the number of persons typically on

campus, the size of walkways and size of facilities supporting their activities is sufficient

to provide multiple scenarios of consistent crowds with stable behavior. This provides

for the collection of data comprising crowd classes of varying congestion levels, counts

and holistic motion. Nonetheless, although we may observe these classes occasionally

they may not all be present during our small recording time.

With that said, the strengths of this crowd analysis approach is in discriminat-

ing holistic crowd behaviors. In other words, our use of a generative model based on

stationary properties of a stochastic process facilitates discrimination across these sta-

tionarities. Furthermore, these stationarities are dependent on camera properties such as

field of view, orientation, focal distance, and perspective. Therefore, scene consistency

is necessary. Consistency ideally presumes scene data was collected (a) using the same

camera, (b) the camera was stationary, (c) lighting conditions were consistent. (a) using

the same camera ensures focal distance and image contrast is constant. (b) stationary

camera ensures holistic motion, e.g. from-left-to-right, doesn’t transform into a contrast-
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ing motion, i.e. from-top-to-bottom. (c) lighting conditions greatly affect the existence

of shadows, lens flares, motion seen. These features greatly affect the segmentation area

of DTMs and consequently may affect analytics dependent on these area features. Al-

though these types of features do not greatly affect analytics such as event recognition,

other analytic systems such as crowd prediction (our analytic of focus discussed and

employed throughout the rest of this thesis) is highly dependent on such features.

Considering these constraints, developing a complete database proved difficult.

Pre-production work included selecting scenes that would support data collection from

orthogonal view points and the pre-determined levels or classes of traffic. For foot traf-

fic, this meant shooting a single scene and collecting all desired classes in the span

of hours to ensure lighting consistency and class consistency from all angles. Many

scenes will support consistent crowd dynamics. However, the entire range of desired

classes existing in that span of hours was not always a sure bet. This resulted in a

database with many incomplete scenes, i.e. non-existing classes on which our experi-

ments depended.[7]

To fill in these missing classes, in a few cases we revisited the scene at a later

date in attempt to capture the missing contrasting crowd patterns. Great attention was

given to placing the camera in the same position and orientation. However, despite this

great effort the original camera position could never be exactly regained. Any changes

of this type introduce an unpredictable bias to our signal. Other sources of bias resulting

from this revisiting are changes in lighting conditions, differing collective energetics of

the individuals comprising the crowds (different times of day), and sometimes a slight

change in pathway layout.

Despite these inconsistencies, event-recognition based on holistic motion proved

rather robust to some biases. For instance, strong direct light yielding strong shadows

and sparse light at night yielding low contrast did not greatly affect classification as

long as these extreme lighting conditions were present in training data. However, as we

will see in the subsequent sections, this robustness to lighting conditions is a strength

unique to event-recognition. This can be answered by or can be accounted for by the

fundamental assumption that a single DT suffices to describe each frame. However,

when this assumption is discarded and replaced by describing each frame with a mixture



8

of textures, or a Dynamic Texture Mixture (DTM), these sources of bias become much

more apparent, as we will see in the next section.

1.1.2 System II

IEEE’s PETS 2009 workshop, fomally known as the Eleventh IEEE Interna-

tional Workshop on Performance Evaluation of Tracking and Surveillance, was held in

Miami 2009 in conjunction with the CVPR 2009 conference. The workshop aimed at

bringing together and comparing performance of systems designed for the purpose of

visual tracking and surveillance. Unique to this workshop was the usage of a static

multi-viewpoint dataset used for all experimental result submissions, which normalized

evaluation and performance comparisons to an arguable degree.

The theme of the workshop was on multi-sensor crowd analysis and event recog-

nition in public areas. There were three levels of analysis sought after: low-level crowd

counting; mid-level tracking of individuals within a crowd; and high-level event recog-

nition and stream detection.[8] The multi-sensor aspect of the theme referred to the

crudely synchronized multiple camera viewpoint setup. The crowd behavior captured in

these datasets was produced using multiple actors.

Figure 1.2: Example Scene from PETS 2009 Dataset S1

In our workshop submission, we explained how we conducted Crowd Counting

and Event Recognition experiments and submitted results based on the viewpoints that

were most amenable to our methods. That is, data captured by cameras from high above
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the ground with a bird’s eye view of the outdoor stage, scene in Figure 1.2. In many

scenarios, our methods performed very well with acceptable error. However, a few

scenarios were difficult. Not due to the complexity of the crowd dynamics, however.

The training of methods was strained and poor for many scenarios due to the scarcity

of data with which to train and test. However, performance hampered by limited data

is not of significance to the community and reveals no insight suggesting new research

directions.[9]

Although there are many efforts to create a rich common experimental environ-

ment, these efforts often are costly and fall narrow in their attempts to encompass an

expansive set of patterns applicable to many of our community’s disentanglement ef-

forts of visual symbols. This was the leading motivation to create a more expansive

database to serve as a common experimental platform.

1.2 Current Work

The automated monitoring and surveillance of crowded scenes is a remarkable

challenge for current image and video understanding technology. It has environmental

application in areas such as security, natural disaster prevention, research in herd and

flocking behavior, population monitoring, entertainment, urban architecture, and mar-

keting. It has recently acquired strong societal significance, due to the possibility of

terrorist attacks on events involving large concentrations of people, a problem for which

there are currently no effective solutions.

At best, available databases are comprised of synchronized multiple perspec-

tives. [9] However, they remain static, i.e. not live and not adaptable to problem-type

needs. Data has been pre-selected as salient for the problem at hand. Data of this nature

tends to cultivate champion techniques that master the challenges laid forth via rigorous

and thorough efforts to create an expansive database. However, due to increasing opti-

mality criteria the definition of robustness is quickly expanding laterally. How should

our approach change to encompass overcoming more with less force?

A common limitation of databases, as we have mentioned previously, are their

finite and static nature. This is acceptable when solving simple and independent prob-
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lems. However, databases of this nature become too limiting when it is our goal to

discover new problems rather than better solve existing ones.

Database design is rather arbitrary and is therefore susceptible to be limited to

what we humans find experimentally salient. This is not unreasonable. After all, we

are also defining the problem. However, at some point databases are being created for

existing problems rather than for unknown problems. Thus, a need for more unbiased

data exists so that we may discover new problems. In other words, our solutions tend

too often to be akin to the proverbial Lamppost Theory, i.e. looking for our lost keys

under the lamppost where there is light. This project serves as a tiny flashlight under that

lamppost to expand problem-solving attention beyond and into the darkness. In other

words, the intention of this project is to create an abundant yet common research envi-

ronment. A database should represent an unbiased and true universe. And as we begin

to draw inspiration from biological systems to solve information processing problems,

we too need to make accessible to machines that in which these biological systems live

and breath.

This project 1) implements a platform for automated monitoring and surveil-

lance of crowded scenes, 2) provides a common experimental environment in which

to test crowd analytics continuously and in real-time, all while 3) overcoming com-

mon limiting constraints such as static databases applicable only to subsets of problems.

This project paves a pathway for new and extended crowd analytic evaluation, includ-

ing: visualizing distributed crowd dynamics across an expansive spatial area as well as

temporally yielding trends over extended durations. Furthermore, this project elucidates

new avenues of crowd research such as 1) crowd interpolation of unmonitored network

pathways, 2) object and person tracking across fields of view, and 3) crowd analysis

of areas with simultaneous multiple perspectives. By making data more accessible, we

expose techniques to many more signal nuances that were previously treated as noise.

1.2.1 System Overview

Seen in Figure 1.3, we have a simple flowchart illustrating our three main mod-

ules that, separately, acquire video, analyze the crowds, and visualize the results. In

Figure 1.4 on page 13, we see these modules in detail.
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Figure 1.3: Simplified System Flowchart.

The fundamental system constraint was working with two virtual local area net-

works (VLANs). The first network is an industry standard Police Surveillance System

manufactured by Pelco R©. and operated by the UC San Diego Police Department (VLAN

318). The second is our SVCL network (VLAN 10) containing a cluster of linux work-

stations for high computational capabilities. These networks are both depicted in Figure

1.4 as boxes with dotted perimeters. Creating a tunnel between them is disallowed do

to university policy at the time of writing this thesis. Therefore, the Acquisition System

was designed to serve as a gateway or security buffer between the two networks. In other

words, the Acquisition System interfaces our analysis network with the police surveil-

lance network. As such, it was necessary to develop this module to run on a workstation

that communicates with both networks, serving as a security buffer or gateway.

As seen in Figure 1.4 below, at the top are our probes or measurement devices.

This is comprised of a network of cameras, network video recorders (NVRs), and a

system manager (SM) to maintain the network and provide information to service re-

questers so that they may directly connect to devices.

At the next level we have our Acquisition Module. This module takes in user

input to specify which data to retrieve from the surveillance network. This could, for

example, specify (a) from which camera we want data, (b) the pan tilt zoom (PTZ) of the

desired camera, or (c) whether we want live or past-recorded data. These specifications

are parsed and interpreted in our data binding and web service scheduler functions.

Lastly, the desired web services are passed to the surveillance network via the Pelco

API Library. Video data is then streamed and stacked to a buffer, awaiting processing

by the Analysis Module. This discussion on Acquisition is continued in Chapter 2 on

page 14.

The Analysis Module will then process the video queue. The previous and next
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module that feed data to and from this module, respectively, are designed to be indepen-

dent of the analysis module. The reason being we desire to be able to switch out this

Analysis Module with others and future analytic methods to come. In fact, the analyti-

cal results reported in the Results chapter are poor under accuracy criterion. The major

contribution of this work is not a novel computational model. But rather, a more robust

and abundant, yet common, experimental environment.

Looking inside our Analysis Module, data is first converted to grayscale and

resized from 1280x720 to 320x180 and cropped to 320x160 (to remove a timestamp

bar). Secondly, a pre-trained DTM model is loaded to segment the video into classes.

The segment features are then learned and used by the predictor to estimate the counts

of each class, i.e. the Results. To perform the prediction, we load a pre-trained count

model. For a typical measurement we have 200 frames, each with a count prediction

times number of classes (typically two), i.e. 400 integer predictions. These values are

averaged and saved sequentially in a results database. This discussion is continued in

Chapter 3 on page 34.

The results database is the foundation of our Visualization Module. The database

is an SQL like web service database called Google Fusion Tables. Fusion Tables are an

accessible storage solution for the geospatial-based results via a subset of SQL com-

mands. These tables allow for quick filtered querying of results and can be integrated

with the Google Maps API and Google Charts API. This discussion is continued in

Chapter 4 on page 47.

For clarification, crowd dynamics are stationary from second-to-second. There-

fore, a crowd-counting system need not be truly real-time, i.e. counting number of

individuals in each frame. On the contrary, it is sufficient that crowd measurements

occur minute-to-minute and to allow intermediate crowd-count predictions to be inter-

polated. Therefore, the real-time requirement can be relaxed and this system is allowed

to work in quasi-real-time, i.e. discrete measurements are made minute to minute and

reported with significant lag. If this is seen as a shortcoming in the future, we provide a

discussionoutlining overcoming this constraint in Future Work, Chapter 5 on page 56.
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Figure 1.4: System Diagram. Each background box with a dotted outline represents

a VLAN while each gray rounded-rectangle represents an application module. The

surveillance network resides in the VLAN 318, the top box. The Analysis Module

resides in our lab’s VLAN 10, bottom box. Straddling both networks is our Acquisition

Module. Outside of these networks lies the world wide web where the Visualization

Module resides.



2 Acquisition Methods

In Chatper 1, we have already seen a full system layout of the network hardware

and application modules in Figure 1.4: System Diagram. Here in Chapter 2 we will fo-

cus on the Surveillance Network and Acquisition Module, compare Figure 2.1 on page

16. In this section we provide a more detailed overview of the network hardware and the

architecture used so that we may ultimately formulate an automated video acquisition

platform to feed our automated Analysis Module. A brief outline of components and

data-flow will be illustrated. For application source code, please see Appendix ??.

Working with the crowd counting system in Section 1.1, we knew that the ideal

camera setup includes a birds eye view of a fairly dense pathway of pedestrians. Aware

of the most popular and salient pathways on the UCSD campus, we first sought to install

a surveillance camera above the entrance to UCSD’s iconic Geisel Library. There ex-

ist considerable interest in creating a visual analytic analogue of turnstile so that richer

building entrance statistics and early detection of emergency events could be made pos-

sible.

Upon investigation, however, the area proved to be highly political. The area

happens to be a crossroads in surveillance jurisdiction between UCSD’s Police Depart-

ment and Geisel Library’s own security team, whose primary tasks include privacy-

preservation of the library’s special collections and of library patrons. Although the

library is adamant in disallowing filming in the library’s interior, they were quite open

to the idea of external entrance monitoring, even if it meant we would be using the

Police Department’s network infrastructure. This and the promise of automated crowd

counting was incentive enough for the Police Department to support my efforts, which

ultimately opened up SVCL’s access to their rich surveillance network.

Since then, however, any installation of electronics along Geisel Library’s con-

14
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crete exterior walls is next to impossible without severe and permanent remodeling due

to the building’s architecture and age. A task neither the Library’s Facility Manager nor

SVCL would be willing to undertake for an exploratory project.

Abandoning this effort, we focused on our plethora of options around Price Cen-

ter. Many cameras are planted high above public pathways and are operational 24/7.

This rich database contains many crowded scenes ideal for preliminary development as

well as many options to challenge analytics in the future. However, as the surveillance

system is a shared resource, we are presented with an interesting challenge to minimally

interfere with this dynamic multi-agent control system. Furthermore, we would need a

method for automatically scheduling video streams that take into account the variety of

communication protocols with which each camera works. As we will see, the surveil-

lance system manufacturer (Pelco by Sneider) has recently started providing solutions

and support to deal with these challenges. Although in its infancy during the lifetime of

this project and slow to respond, the API support team was helpful in working with there

products and working around their software bugs. In the next sections, we will discuss

the Surveillance Network’s hardware infrastructure and its Software Development Kit

so that we may better understand how our Acquisition Module must operate.
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Figure 2.1: Acquisition and Surveillance System Diagram. Shown above is the same

Acquisition Module and Surveillance Network previous shown in Figure 1.4: System

Diagram on page 13.



17

2.1 Surveillance Network Hardware

This video network is owned and operated by the UC San Diego Police De-

partment and the UC San Diego Bookstore’s Crime and Theft Prevention Team. The

network, itself, was developed by Pelco, Inc. by Schneider Electric. Pelco is a leading

manufacturer in video and security systems. There are a few different device types rel-

evant to our project and which we will discuss in the next few subsections: Cameras,

Network Video Recorders (NVR), and System Managers (SM).

2.1.1 Cameras

Pelco cameras are equipped with industry standard features, see Table 2.1. Our

current system uses two basic types of cameras: Static and Pan-Tilt-Zoom (PTZ). The

only practical difference is that PTZ cameras are housed in a robotic dome, giving them

their PTZ features.

Table 2.1: Pelco Camera Features

Pelco Camera Features

Up to 1.2 Megapixel (MP) Resolution (1280 x 960)

Up to 30 Images per Second (ips) at 1280 x 960

Auto Back Focus

H.264, MPEG-4 and MJPEG Compression Capability

Day/Night Models with Mechanical IR Cut Filter

Wide Dynamic Range with Anti-Bloom Technology

Power over Ethernet (IEEE 802.3af) or 24 VAC

Up to 2 Simultaneous Video Streams

Built-In Analytics

Local Storage (Mini SD) for Alarm Capture

Open IP Standards

Pan Tilt Zoom Dome Enclosures

Motion Detection
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Camera Locations

Plan-view and satellite view showing camera locations are provided to contex-

tualize the network as well as demonstrate its expanse. Google does not offer print

quality copies of their maps. The following are, unfortunately, screen captures. Dis-

claimer: Google Permissions[10] states screen captures, as seen here, may be published

and reproduced with out their permission.

Figure 2.2: Locations of salient cameras on the main UCSD Campus. The approx-

imate geospatial location (latitude, longitude) of the center of this map is (32.8800,

-117.2371). At the center of the map is a cluster of cameras. This cluster coincides

with the center of campus, Price Center (Detail in Figure 2.3). Blue Markers mark

static cameras. Red markers mark PTZ cameras.[11]
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Figure 2.3: Camera Locations and Field-of-Views - Price Center Map. We gave

greatest attention to the scene located just above Student Services Facility, the scene

middistance from Yogurt World and Burger Kind, and the long pathway just below

UCSD Outback Surf Shop. The Warren Mall area of the top of the map is another

interesting isolated scene. Also, the intersecting fields-of-view at the left end of

Lyman Ave is an interesting multi viewpoint scene.
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2.1.2 System Manager

The SM of this networked system can be thought of as the central administrator.

The SM not only serves as a switch board to connect devices, it ultimately keeps every

device clock synchronized and serves as an indexing of attributes.

2.1.3 Network Video Recorders

NVRs are the primary storage centers for the large quantities of data required

by recorded video. However, NVRs also serve as encoders and indexing agents; they

actively re-encode, compress, index, and backup data per SM requests. These devices

are key to the exportation process occurring in our acquisition application, especially

for PTZ cameras.

Since cameras are shared devices, PTZ camera orientation may be, and often

is, changed at any given time by officers currently viewing the same multi-cast stream.

Since our analysis module currently only deals with static-views, is it essential we en-

sure consistent views when acquiring data. Furthermore, since acquisition is a periodic

process, e.g. we record 20 seconds every 10 minutes, we require a method of ensuring

this consistency while sharing the cameras. To overcome this problem, we adjust camera

orientation prior to each acquisition and export the clip only after ensuring parameter

constraints exist for the length of the record. Therefore, it is essential to communicate

not only with cameras during this process, but also the the NVRs as well.

2.2 Surveillance Network Software

In this section we provide an overview of the software and communications side

of the surveillance network. Namely, an overview of standard communications proto-

cols, such as SOAP and Web Services, and how they link applications together. This

discussion will not be thorough nor highly technical. It will provide function descrip-

tions so that the reader may follow the processing flow.
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2.2.1 Pelco SDK Libraries

The Pelco Software Development Kit (SDK) is a Pelco distributed software bun-

dle comprised of core resource libraries that provide developers with the ability of inter-

facing C++ applications with Pelco Surveillance Systems. See Table 2.2 on page 22 for

a list of the SDK libraries and their description. This project primarily employs the ex-

porter library for data acquisition. However, the use of the PTZ Control Wrapper library

was also necessary to control PTZ camera settings and the GSOAP library to control the

video stream quality.

Web Services

Web services is a enterprise standard when applications need to communicate

with one another. Simply put, Web Services is a sum of XML and HTTP in that data

content is structured in the XML format and transferred over HTTP.

Microsoft Visual C++ 2008 Express Edition

An integrated development environment required by Pelco’s Software Develop-

ment Kit, this software application provided the C++ source code editor, linker, compiler

and debugger necessary for developing our acquisition software discussed in Section

2.3.
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Table 2.2: Pelco SDK Libraries

Pelco SDK Libraries

System Manager Wrapper Provides Device and Service Discovery web services li-

brary.

API Viewer Library for controlling and viewing streams from cam-

eras and NVRs.

PTZ Control Wrapper Library that enables PTZ (Pan, Tilt and Zoom) camera

action calls on Endura network (which includes return-

ing the absolute position of Pelco camera domes), as

well as encompassing Preset and Pattern action calls.

Meta-data Parser Library for parsing timestamps and built-in motion ana-

lytics.

Exporter Library providing capture functionality of live and play-

back video. Can export queried video in AVI, MP4,

3GP, or PEF formats.

GSOAP PelcoGSoap library provides C++ interface for SOAP

clients to make SOAP calls to Endura devices.
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2.2.2 Relevant Functions

Here we list the functions central to our exporter module to better illustrate

the exporter’s functionality.. We include their Namespace, Class, and argument data

types.[12] Function inputs are generated by our timing schedule and user input dis-

cussed previously.

Export Initialization Function

This function sets up the exporter module. The sm ip address, and the ip address

of the interface to use for incoming streams are passed.

Usage:

PELCO_API_EXPORT void PelcoAPI::EnduraExporter::Setup

(const char * sPluginDir, const char * sSmAddress, const char *

sLocalAddress, const char * userName = NULL, int nStartPort =

8000, int nEndPort = - 1, bool bQAppCreated = false)

Parameters:
sPluginDir The API Plugin Directory

sSmAddress The SystemManager IP Address

sLocalAddress The IP Address of the interface to receive incoming streams

nStartPort The start port number

nEndPort The end port number

bQAppCreated The QApplication is created outside the exporter or not
Returns: void

Export Start Function

Start a new export using the setup data and the information passed in the param-

eters.

Usage:

PELCO_API_EXPORT bool PelcoAPI::EnduraExporter::StartExport (

const char * sFileInfo, const char * sDeviceID, VideoCodecType

OutputCodec, const char * sStartTime, const char * sEndTime,

bool bVideoOnly = true)
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Example:

bool bSuccess = exporter.StartExport(

"D:\\Video\\test123.avi",

"uuid:691fd745-006c-4fc9-9262-23c13e977ce4",

PelcoAPI::CODEC_ID_MPEG4,"2010-01-11T22:10:35", "2010-01-11T22:11:15",

false, "uuid:691fd745-006c-4fc9-\\9822-23c13e977ce4");

Parameters:
sFileInfo Output file path

OutputCodec Output video codec

sDeviceID Camera device UUID

sStartTime Start time for recording - NOW for live or UTC time (e.g. 2009-05-

28T16:30:00) for playback

sEndTime End time for recording

bVideoOnly Boolean value for export video only or export with audio if it exists
Returns: success or failure

PTZ Absolute Move

Sets the IP camera’s viewing position. If successful this will return true; it will

return false otherwise. You can tilt and pan at the same time, which will move the cam-

era view diagonally.

PELCO_API_EXPORT bool PelcoAPI::PTZControlWrapper::AbsoluteMove

(int positionX,int positionY)

Parameters:
positionX A negative integer value will pan the camera left. A positive integer will

pan the camera right. Valid possible values are -360,000 micro-degrees

to 360,000 micro-degress.

positionY A negative integer value will tilt the camera down. A positive integer

will tilt the camera up. Valid values approximately range from -90,000

to 90,000 micro-degrees.
Returns: bool If successful this will return true; it will return false otherwise.
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PTZ Get Absolute Position

Returns the IP camera’s current viewing position.

Usage:

PELCO_API_EXPORT bool PelcoAPI::PTZControlWrapper::GetPosition

(int positionX,int positionY)

Parameters:
positionX This is the camera’s current position on the rotational X plane.

positionY This is the camera’s current position on the rotational Y plane.
Returns: bool If successful this will return true; it will return false otherwise.

PTZ Absolute Zoom

Sets the IP camera’s zoom level.

Usage:

PELCO_API_EXPORT bool PelcoAPI::PTZControlWrapper::AbsoluteZoom

(int zoom)

Parameters:

zoom Integer. The desired magnification value.

Returns: bool If successful this will return true; it will return false otherwise.

PTZ Get Absolute Zoom

Returns the IP camera’s current zoom level.

Usage:

PELCO_API_EXPORT bool PelcoAPI::PTZControlWrapper::GetAbsoluteZoom

(int & zoom)

Parameters:

zoom A pointer to the result.

Returns: bool If successful this will return true; it will return false otherwise.
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PTZ Goto Preset

Brings the device to a specific preset state, given the name of the desired preset

to execute.

Usage:

PELCO_API_EXPORT bool PelcoAPI::PTZControlWrapper::GotoPreset

(const char * presetName)

Parameters:
presetName The name of the preset to execute. This is the format for the preset-

Name: PRESETx, where x is the actual name of your preset. e.g. A

preset is named 100. Consequently a valid parameter for presetName

would be PRESET100.
Returns: bool If successful this will return true; it will return false otherwise.

PTZ Set Preset

Sets a preset or pattern. Depending on whether they already exist or not, it will

either create a new preset or pattern or modify an existing one.

Usage:

PELCO_API_EXPORT bool PelcoAPI::PTZControlWrapper::SetPreset

(const char * presetName)

Parameters:

presetName The name of the preset or pattern to be either created or modified.

Returns: bool If successful this will return true; it will return false otherwise.

isPTZCamera

Check if it is a PTZ cameara. If it is a PTZ cameara this will return true; it will

return false otherwise.

Usage:

PELCO_API_EXPORT boolPelcoAPI::PTZControlWrapper::IsPTZCamera ()
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Parameters:
presetName The name of the preset to execute. This is the format for the preset-

Name: PRESETx, where x is the actual name of your preset. e.g. A

preset is named 100. Consequently a valid parameter for presetName

would be PRESET100.
Returns:

bool If successful this will return true; it will return false otherwise.

Poll Status

The combined usage of these functions with appropriate parameters will pull

data from any camera online during the desired schedule. Additionally, using the fol-

lowing function to poll the status of the data stream may be used:

Usage:

PELCO_API_EXPORT int PelcoAPI::EnduraExporter::PollStatus

(int timeout = 60)

Returns: the status of the export or -1 on error

2.3 Acquisition Module

Module responsible for interfacing our Surveillance Network and Computational

Network. This module uses the API libraries listed in Table 2.2 on page 22 to en-

able command-line functionality, making automated and controlled exportation of video

steams possible. This automated platform serves as a rich and common experimental en-

vironment. The openness of our database is attributed to the real-time streams from our

live system; in the physical system sense, content flows into our database openly. The

dynamics of the database are attributed to dynamic devices such as our PTZ cameras.

2.3.1 Exporter Application

This application accepts user input to specify which data to retrieve from the

surveillance network. This could, for example, specify (i) from which camera we want
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data, (ii) the pan tilt zoom (PTZ) of the desired camera, or (iii) whether we want live or

past-recorded data. These specifications are parsed and interpreted in our data binding

and web-service scheduler functions. For example, if we specify a data stream from a

live and PTZ camera, our web-services scheduler will load the PTZ control library using

a rule-based algorithm. Lastly, our scheduler passes the correct arguments to the API

Library Export function. The library interprets the input and communicates with the

specified devices using the necessary web-services. Video data is finally streamed and

stacked to a buffer, awaiting processing by the Analysis Module.

This application was compiled using Microsoft Visual C++ 2008 on a windows

machine running Windows XP Service Pack 3. After specifying the timing and camera

parameters previously discussed, this application can be run on any machine running

windows xp and connected to the Surveillance Network. Although it is not required,

saving video streams to the Analysis Network requires a secondary network interface

card be installed on the machine and a Analysis Network file system be mounted on our

local file system. Under our current configuration, we have mounted a public network

drive that is also mounted on our SVCL Analysis Network. Under this configuration,

our video stream is buffered to a network file system common to both networks.

2.3.2 Timing Schema

User Input Schema is divided into two sections: Timing Parameters and Scene

Configuration. User input is specified in a text file. Timing Parameters specify the

timing schedule illustrated, right. Scene Configuration specifies camera settings (i.e.

which camera, PTZ coordinates, codec compression, resolution, etc.). For example:

if we request a 20-second clip every 10 minutes and also specify two scenes, we will

receive two 20-second clips every 10 minutes; one for each scene. The illustration to

in Figure 2.4 shows the timing schedule containing two clips, though in practice many

more would likely be scheduled, and not necessarily from the same scene. Their start

times, respectively, are t=k and t=k+1. Not all cameras will require LAG1, e.g. static

cameras. This application was designed to cycle through multiple scenes/cameras to

gather data from multiple areas of interest. Although Pelco software supports multiple

streams, this application cycles through scenes and exports single clips at a time until
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the lifetime of the experiment expires.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clip Schedule k+0

LAG1

CLIP_LENGTH

LAG2

Clip Schedule k+1

LAG1

CLIP_LENGTH

LAG2

Figure 2.4: Export Schedule

2.3.3 Video Stream Parameterization

In acquiring data, we specify data parameters and run the Exporter C++ ap-

plication on our windows workstation (Acquisition Module). Parameters are specified

in a structured configuration text file with extension .cfg, a similar yet simplified and

more compact form of an xml schema, which is bound using the open-source shared

C++ library libconfig.[13] Below we include the configuration schema and an example

configuration file. In Table 2.3, we list the schema datatypes seen in the schema and

example below.

Table 2.3: Configuration File Datatypes

Settings < name = value> Values may be a scalar value, an array, a group,

or a list.

Groups <{setting, setting, ... }> Groups may contain any number of settings.

Lists <(value, value, ...)> We use lists to represent multiple scenes and

each value is a group of scene settings.

The format of the configuration file is as follows. At the root is a setting with

the name configuration. Its value is a group. This group contains two settings, named

params (short for parameters) and scenes. (i.e. configuration = {params; scenes};)
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Table 2.4: Configuration File Format

params Setting Format sceneX Group Format

params=( { {<sceneX>} = {

CLIP_LENGTH = <seconds>; friendlyName = <sceneName>;

FREQ= <seconds>; CAMERA_IP_ADDRESS=

<XXX.yyy.XXX.yyy>;

LIFETIME= <seconds>; PORT_NUMBER = 80;

UTC= <seconds>; CAMERA_NUMBER = 1;

LAG1= <seconds>; CAMERA_udn = uuid:<uuid>;

LAG2= <seconds>; EXPORT_FOLDER = <directory>;

*STARTINGoffset= <seconds> PREFIX = “vid”;

}); isPTZ=<bool>;

*PRESET = <PRESETXX>;

*intPRESET = <PRESETYY>;

}

The params setting’s value is a list containing a group specifying global data

settings such as clip length, frequency, and the lifetime (how many clips to export).

In other words, the params structure defines the when. (i.e. params=({ <setting>;

<setting>; ...}).)

The scenes setting’s value is a list of scenes, each containing a group of settings.

Each group of settings define a scene. These scene parameters include the name and

location of a camera, the camera’s settings, and the destination of the video stream

(scene buffer or export folder). In other words, the scenes structure defines the where.

(i.e. scenes=({<scene1>},{<scene2>},...);}; .)

This format is shown in Table 2.4 (an asterisk signifies the setting is optional):

Table 2.5 outlines each of the settings contained in the params setting and its

expected input type. Table 2.6 outlines the settings contained in each sceneX group

listed in scenes.
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Table 2.5: Acquisition Module Export Parameters

params

Name Units Description

CLIP_LENGTH seconds Length of each video clip. Usually 20 seconds.

FREQ seconds Defines the minimum elapsed time required before

exporting new data.

LIFETIME seconds Maximum elapsed time allowed from start of export.

UTC seconds Current distance, in time, workstation clock is from

Universal Time

LAG1 seconds Time needed by system to ensure PTZ settings take

effect before recording.

LAG2 seconds Time needed by system to ensure recorded clip is

ready for export.

*STARTINGoffset seconds Relative distance from present to past. Used to export

non-live video recorded in past.
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Table 2.6: Acquisition Module Scene Settings

sceneX

Name Units Description

CAMERA_IP_ADDRESS IPv4 Used for camera control, i.e. PanTilt-

Zoom (PTZ).

PORT_NUMBER int Typically 80.

CAMERA_NUMBER int Typically 1.

CAMERA_udn uuid Universally Unique Identifier of camera

for exporting recorded data.

EXPORT_FOLDER directory Scene-specific storage location of all ex-

ported data.

PREFIX string Arbitrary Video File Prefix.

isPTZ true/false Flag indicating whether a camera’s

scene can be adjusted. If true, exporter

expects the following PRESET settings

to be specified.

*PRESET PRESETXX Specifies which scene is desired from a

camera. XX should be replaced with an

integer.

*intPRESET PRESETYY Dummy name used to save initial cam-

era settings so they may be returned af-

ter export.
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Here is an example of a .cfg file:

1 # Example Configuration File

2 configuration =

3 {

4 params = ( {

5 CLIP_LENGTH = 20;

6 FREQ = 30;

7 LIFETIME = 3600;

8 UTC = 28800;

9 LAG1 = 2; // Wait for PTZ.

10 LAG2 = 20;// Wait for NVR

11 //STARTINGoffset = 17200;

12 });

13 //END params

14

15 cameras = (

16 //SCENE 1

17 {

18 friendlyName = "scene1";

19 CAMERA_IP_ADDRESS = "172.31.200.9";

20 PORT_NUMBER = 80;

21 CAMERA_NUMBER = 1;

22 CAMERA_udn = "uuid:31990bfb-c356-75a3-2cb8-114277a23904";

23 EXPORT_FOLDER = "Z:\\Mulloy\\Incoming\\scene1\\pef\\";

24 PREFIX ="vid";

25 isPTZ =true;

26 PRESET ="PRESET56";

27 intPRESET ="PRESET57";

28 },

29 //SCENE 2

30 //

31 );

32 //END scene list

33 };

.



3 Analysis Methods

This chapter will discuss the Analysis Module, which is an automated people

counting system. The foundation of this counting system was built by SVCL Alumnus

Professor Antoni Chan. Upon this foundation we have built an automated system that

uses the segmentation, featurizing, and prediction computer vision and machine learning

methods discussed in [2, 3, 4, 9, 14]. However, we additionally implement a variant

technique to allow for more complex motion modeling (discussed in Section 3.2.1 on

page 36).

This chapter is divided into three sections: The first is a brief overview of our

automated counting system without technical details; The second covers the computa-

tional tools necessary to build a people counting model in technical detail; And the third

we discuss in technical detail the usage of these tools in our automated system and its

implementation.

3.1 Crowd-Counting Overview

Implemented on our SVCL Linux Cluster in C code, our automated crowd-

counting module is illustrated in Figure 3.1. We focus on scenes in which there are

many pedestrians with a collectively similar trajectory and/or a collectively opposing

trajectory. For example, 15 persons may be moving northernly and while 7 persons

move southernly on a shared pathway. Persons naturally will form clusters to benefit

their unobstructed motion. These crowds can be characterized by a collective action

and holistic motion. Since Dynamic Textures (DT) are good models for holistic motion,

these scenes lend themselves to motion segmentation based on DT models (DTM).

Once we have trained our models on these contrasting holistic motions, features

34
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Video

Motion Segementation

feature extraction count estimateGP model

[1]
Figure 3.1: Crowd-Count System Flowchart [3]. First, we perform motion seg-

mentation based on DTMs. Next, separate segments by class and perform feature

extraction. After training the GP model via maximizing marginal likelihood on

training data, we may obtain count estimates of segments based on their features

via regression.

like segmentation-blob area may be extracted. Since it is our goal to build a people count

model, we learn a Gaussian Process Regression that may relate the extracted features

to integer count estimates. Our computational tools are borrowed from the SVCL C

and Matlab repositories. Some functions, especially the Matlab, are not optimized for

computational efficiency. Rather than re-write these functions in our C library, we have

incorporated multi-threading techniques in our wrapper applications where appropriate

to reduce computational time.

3.2 Computational Tools

This section covers the technical details of the elements in Figure 3.1. These

include: (a) Dynamic Texture Model, (b) Motion Segmentation, (c) Features, and (d)

Regression.
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3.2.1 Dynamic Texture Model

A Dynamic Texture is a generative probabilistic motion model suitable for holis-

tic representation of crowds. Under this model, video frames and content motion are

treated as a sampling of a latent motion model, respectively. In Figure 3.2, observations

(video frames) are the sampling of a Linear Dynamic System (LDS),{
yt =Cxt +wt

xt = Axt−1 + vt

where,
xt ∈ Rn hidden state encoding the dynamics of the video over time.

yt ∈ Rm observation vector encoding video frame at time t.

A ∈ Rnxn transition matrix that controls hidden layer evolution and motion dy-

namics.

H ∈ Rmxn observation matrix responsible for projecting from our hidden state

space to our sample space.

vt ∼N (0,Q) Normally distributed additive noise term. Q ∈ Rnxn

wt ∼N (0,R) Normally distributed additive noise term. R ∈ rIm

This technique [15] is useful for learning holistic models of a crowded scene,

given the crowd dynamics are stationary. However, what of scenes composed of multiple

crowds and/or non-stationary dynamics? For this, we take this technique a step further

by modeling each holistic motion class separately with a component of our mixture

model, as in [4] and again in our previous work [9].

When working with well-behaved crowds on narrow pathways, holistic motion

can be divided into 2 or 3 classes. There are people walking left or right, up or down,

northwest or southeast, and so on. Motion of anomalies, such as bicyclists, runners,

physically disabled, and golf carts, is constrained to lie closer to a dynamics median.

However in open spaces, the motion of anomalies is much more pronounced. Cyclists

and runners have more room to navigate and retain their dynamics, created substantially

separate classes of motion. Conceptually, imagine two motion histograms characteriz-

ing these two cases, narrow spaces and open spaces. Similarly, both histograms will
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possess large peaks associated with zero motion and with small background motion.

Furthermore, both with contain a wide peak reflecting normal crowd motion mixed with

anomalies. However, in the latter open space we expect to also see additional distinct

peaks reflecting anomalies of greater liberties, i.e. cyclists, runner and golf carts.

In our previous work [9], crowds were well behaved actors. Our data allowed

for a rather eloquent solution: a single Gaussian Mixture to model all motion of inter-

est well. However, two problems arise when employing this same technique on crowds

that are not well behaved nor on narrow pathways. First, collective and holistic motion

become more difficult to define. For example, if it is our goal to discriminate between

crowds moving in opposing directions, how do we classify perpendicular crowd move-

ment? Second, training data becomes sparse. Training a single mixture model, where

each mixture component represents a class of motion, presumes all classes are continu-

ously present in our training data. However, in open spaces crowds are more dispersed

as well as more numerous. Therefore, the likelihood that all crowd classes are present

at any given time quickly diminishes along with our techniqueÕs efficacy and ease of

training.

In an effort to salvage this technique and capture the complexity of motion, we

attempted to model each opposing crowd with its own mixture model. For example, to

discriminate northbound and southbound crowds we learn two separate mixture models

for each of these two crowds, rather than a single mixture model with two compo-

nents. Whereas before we attempted to capture all northbound crowds (comprised of

sub-classes: walkers, runners, cyclists, and golf-carts) in a single mixture component,

we now define all these motions as a complex collective motion and model each sub-

class with a single component. All preceding and following techniques may remain

intact.
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Measure:

vt−1 vt vt+1

· · · xt−1 A xt A xt+1 · · ·

wt−1 H wt H wt+1 H

yt−1 yt yt+1

Figure 3.2: Dynamic Texture Model (DTM) Diagram. A DTM has two layers. In the

first layer, xt is our hidden state and A is our transition matrix. In the measurement layer,

yt is our observations (video frames) and H is our observation matrix. vt and wt are our

normally distributed additive noise terms.[15] Figure adapted from [16].
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Figure 3.3: Motion Segmentation Flowchart [4]. First (left) video is cut into video

cubes, typically 7x7x20. Next (middle) we learn a mixture of dynamic textures and

cluster the cubes to form classes. Lastly (right), we perform motion segmentation

by assigning pixels to clusters.

3.2.2 Motion Segmentation

As the previous section elucidated, we may model multiple motions simultane-

ously via learning a gaussian mixture model using the ubiquitous Expectation Maxi-

mization (EM) algorithm. Trained models can then be loaded on demand for the pur-

pose of classifying video patches, sequentially. However, when using previous methods

(where opposing motions are modeled by mixture components) patches may be read-

ily assigned a class and clustered based on mixture components of largest posterior

probability, declaring the patch location as belonging to a segmentation region associ-

ated with this component. [4] However, in our new technique we modify our modeling

so that multiple mixture models are trained, one for each opposing complex motion.

Therefore, this modification requires assigning patch classes based on mixture model of

largest likelihood. Figure 3.3 illustrates both methods.
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Table 3.1: Segmentation Features Table

Segment Features These features capture segment shape and size.

area number of pixels in segment.

perimeter number of pixels on segment perimeter

edge orientation orientation histogram of perimeter

perimeter-area ratio measures complexity of segment shape

blob count number of connected components with more than 10 pixels

in the segment

Internal edge Features The edge is extracted using a Canny edge detector, which

is highly indicative of number of persons [17] [18].

Total edge pixels number of pixel contained in segment

Edge orientation 6-bin histogram of the edge orientation in the segment.

Minkowski dimension fractal dimension of the internal edges, which estimates de-

gree of space-filling of edges.[19]

Texture Features computed using GLCM. Each computed for θ ∈
{0◦,45◦,90◦,135◦}
Homogeneity measures smoothnes of texture

Energy measures the total sum-squared energy

Entropy measure randomness of texture distribition



41

3.2.3 Features

In Table 3.1, we list the features used to compose of feature space. These features

characterize the crowd segments from the previous section based on size and shape as

well as texture and entropy. These features can be used to regress onto a count estimate

of each segment. This is accomplished by concatenating our features into a vector and

modeling the regression using a Gaussian Process (GP). The feature vector characterizes

a distribution over functions.

3.2.4 Regression

If we take a look at some of the features such as segment area and shape, we can

see how they are good linear indicators of how many people are contained in a crowd.

However, how can we account for non-linearities? Computationally, these features can

be used to regress linearly and non-linearly onto a count estimate of each segment. For

this regression we use the Gaussian Process (GP) Regression and create a GP regression

model based on our feature vector. The feature vector is composed of a concatenation

of all our features.

A Gaussian Process is a distribution over functions, say f (x), defined by a co-

variance function, let’s call it k(x,x′). Taking the inner product of f using the kernel

trick, we retrieve an expression for k such that we can train our GP model. We select

a model that easily takes into account our mostly linear regression (after perspective is

accounted for) while taking into account local non-linearities that may be attributed to

person occlusion, intra-crowd spacing, and segmentation errors (perhaps due to lighting

variation and shadows). Capturing both the linear and non-linear components, we select

the following kernel/covariance function with hyperparamters α = {α1,α2,α3,α4}:

k(xp,xq) = α1(xT
p xq +1)+α2 exp

−‖xp−xq‖2
α3 +α4δ (p,q)

Our first term captures the linear components of our people count model. The

second term of the kernel is the RBF component, which captures the local non-linearities.

The third term models observation noise. Since this is a special case of Bayesian Infer-

encing where our prior is a GP, the hyperparameters may be learned via maximizing the
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marginal likelihood of the training data. After training the model, we may obtain count

estimates of segments based on their features via our GP regression model.[3] [20]

3.3 Automation Implementation

Now that we have the computational tools for a people count model, we may

discuss how to integrate these methods into an automated system. We will discuss the

core functional blocks seen in

VLAN 10

Buffer

PreprocessSegmenter

DTM model

Featurizer

PredictorCmodel

Analysis Module

Results

Figure 3.4: Analysis Module Diagram. Depicted above is our Analysis Module. The

Analysis Module resides in SVCLs VLAN 10.

3.3.1 Scene Setup

Scene Definition

Since our crowd counting analytic is not viewpoint invariant and counts people

without people models, i.e. has no method for contending with camera motion, we

must constrain the definition of scene to any fixed camera field-of-view. Static cameras

support one field of view. However, their high-definition single-field-of-view image

may be cropped, yielding many sub-scenes for the crowd counting analytic. Pan-Tilt-

Zoom (PTZ) cameras support a larger variety of scenes. Panning a camera a few degrees
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1 2 3 4 5 6 7 8 9 10 11 12 13

PreProcess

Clip K

Motion Segmentation

Feature Extraction

Predictions

Clip K+1

Motion Segmentation

Feature Extraction

Predictions

Figure 3.5: Analysis Schedule - The preprocess is a background process. The initial

Clip K must wait for the preprocessing of the first clip. However, at the end of processing

Clip K, Clip K+1 immediately begins.

may introduce enough change in the holistic motion of classes that which a new DTM

model is necessary. Since cameras are shared and may be controlled by the UCSD

Police, we must have a method for holding viewpoints constant when streaming data.

Conveniently, static cameras inherently possess this functionality and PTZ cameras may

be programmed to store necessary settings as presets. (see section 2.2.2 for GotoPreset

class reference on page 26.)

3.3.2 Count Functions

The main functions our automated counting wrapper integrates, including itself,

are listed in Table 3.3.

3.3.3 Experiment Setup

Before we have actually turn on the automated system, our computational tools

require some supervised learning for each scene. This has been outlined in [21] and [22]

located in the SVCL Matlab code repository. However, for completeness we provide a

list of the required files in Table 3.3.

Training the people counting model requires the following files in Table 3.3.
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Table 3.2: Core Analysis Automation Functions

Compiled C Library functions in SVCL CrowdAnalytics repository.

count_scene.c Multi-threaded People Counting Wrapper Application that

integrates all of the following functions and applications.

pef2y.c A modification of the perl script mp2dat. Used to convert

videos from pef format (MPEG4-PS codec) to linux dat for-

mat. Converts from 3-channel RGB to grayscale. Rescales

from 1028x720 to 320x180 and cropped to 320x160 to re-

move timestamp.

Shared C Library functions in SVCL dytex repository.

segm_dytexmix_learn Used to learn a DTM and segment clip based on model.

dytex_mix_save Used to save a DTM model for usage on future clips. Shared

C Library.

dytex_mix_load Used to load a previously learned DTM.

segm_dytexmix Used to segment a clip based on a previously learned DTM.

Compiled Matlab functions in Antoni Chan’s peoplecnt matlib library.

peoplecnt_cmd Computes features (see Table 3.1 on page 40 listed in op-

tions structure (see Appendix A.2). And regresses features

to count predictions using our trained GP regression model.

Table 3.3: Required Files for Counting Model Training

an options structure (see Appendix A)

videos.

segmentations of the videos into different crowds (e.g. by direction of motion).

a segmentation map, which labels each segment.

a region-of-interest (ROI) in the video.

the ground-truth counts for each segment in the ROI.

a perspective (normalization) map.

an evaluation set, which specifies the training and test sets.
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Place all required files in a folder named sceneX corresponding to the name of our

scene. After we have thoroughly defined our scene parameters, our exporter should be

running and placing the desired clips in our shared buffer. Our re-coding application

pef2y.c, or some modification of it, can be used to produce the desired video clips. If

we modify pef2y.c, count_sceneX.c should inherent these changes before compilation.

After training is complete, compile count_sceneX.c with the modified pef2y.c (replacing

X with the scene name).

For multiple scenes, there should be multiple compiled versions of the count

_sceneX.c wrapper application. This application should be compiled using the imake

method.[23] Once our application has compiled, running it will process scene clips on

the fly. The application can run pef2y.c as a multithreaded subprocess thus readying a

video for count prediction as soon as the previous result estimates are calculated.

As discussed previously, see Figure 3.4, our wrapper: (1) loads a pre-trained

DTM model, (2) performs motion segmentation based on DTM model, (3) our pre-

trained count model is loaded into the prediction function, (4) features are then fed into

our prediction model where count estimates are formed, (5) results are saved a matlab

.m file, and finally (6) AppendTable.py parses and sends the results to our visualization

module.

3.4 Known Issues and Notes

1. As mentioned previously, the core agents were developed in matlab, converted to

a shared C library, and linked to our main application. While other functions in

this relay race take seconds to run, these functions are attributed to over 80% of

computational time. It is difficult to say how much time could be saved. However,

rewriting these functions in C would make bring the lag down from 10 minutes

to, perhaps, 3 or 4 minutes. The incentive to do so will increase as this distributed

analytics system is scaled up to handle more scenes.

2. Many fields of view are overlapping in the center of campus where the density

of outdoor cameras is greatest. A method for integrating knowledge from each

viewpoint, i.e. consolidating predictions, is an interesting next step to take. De-
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veloping a viewpoint invariant analytic could perhaps be tethered to efforts of

bootstrapping training of models of similar scenes.

3. Overlapping with the previous note: anytime camera maintenance or system up-

dates are performed on the surveillance system, DTM models must be re-trained

as we cannot ensure presets and camera orientations are consistent.

4. Many cameras are relatively low to the ground and are sub-optimal for our ana-

lytic. This results in complex crowd motion that can be difficult to segment into

a couple classes. Therefore, in some cases it may be necessary to train multiple

classes and combine their models after training to ensure the desired class segre-

gation is achieved. (look up function)



4 Visualization Methods and Results

The results database is the foundation of our Visualization Module. The database

is an SQL like web service database called Google Fusion Tables. Fusion Tables are an

accessible storage solution for the geospatial-based results via a subset of SQL com-

mands. These tables allow for quick filtered querying of results and can be integrated

with the Google Maps API and Google Charts API.

4.1 Core Python Scripts

The following functions were written in python and intended to be command-

line linux functions that also can be, and are, called from our automated counting wrap-

per. The source code for each function can be found in Appendix ?? on page ??.

4.1.1 ShowTables

Our ShowTables python function can be called by simply typing “python ./ShowTa-

bles.py". This will return a list of Fusion Tables and there unique table id, which are

associated with the default Google Account “svclmulloy@gmail.com” that was created

explicitly for this project.

4.1.2 CreateTable

When creating a new Fusion Table, we use the CreateTable.py python function.

This function accepts a tablename and the directory path of two metadata files. After

authenticating, we save the authentication token, table name, and table id as a pickle file

so that our other functions may quickly access the same table.

47
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#### e.g. $ python CreateTable.py -n ’TestTable’

#### -n <tablename>

#### -s <header_names>.csv, default: "header_names.csv"

#### -t <header_types>.csv, default: "header_types.csv"

These helper files contain our standard table format and define the column and column

type space of our tables. The contents are shown below.

1 DATETIME,STRING,LOCATION,NUMBER,NUMBER,NUMBER,NUMBER,NUMBER,NUMBER,\\

2 NUMBER,NUMBER,STRING,STRING,LOCATION

1 time,locationName,location,count_class1,variance_class1,\\

2 direction_class1,count_class2,variance_class2,direction_class2,\\

3 averageCount,averageVariance,previewURL,Analytic,geometry

4.1.3 AppendTable

This function will upload our automated count results from local storage to Fu-

sion Table storage. To do so we need to tell the function: - Which scenes to update.

- Some metadata that remains constant measurement to measurement - And where to

upload the results

We achieve this, we pass the following arguments:

#### e.g. $ python AppendTable.py -n ’TestTable’ -s ’scene1.csv’

#### -n ’TableName’ - Name of pickle file for existing table.

#### -f ’header_names.csv’ - Table Header Names

#### -s ’scene1.csv’ - Static Data for each scene

TableName is used to retrieve the table authentication token from a pickle file of the

same name.

Since each scene has unique metadata (e.g. location, area, preview image), the

-s option is used to pass the filename containing this metadata. (e.g. scene1, scene2,

and scene3). These names correspond to (pre-written by user) csv files which contain

metadata describing visualization related metadata. Below is the csv file structure and
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content name.

Segment Name 1 Segment Name 2

Direction 1 Direction 2

Scene Prefix Location Coordinates

Scene Preview Image URL

Analytic

Polygon Map
For example, here are three csv files with the scene-specific metadata.

scene1:

1 scene1_d,scene1_u

2 90,-90

3 scene1,"32.879276 -117.235893"

4 http://www.svcl.ucsd.edu/~mulloy/Preview/01PTZ.jpg

5 CrowdCount

6 "<Polygon><outerBoundaryIs><LinearRing><coordinates>-117.235771,\\

7 32.879353,0 -117.235756,32.879269,0 -117.236084,32.879219,0 \\

8 -117.236107,32.879345,0 -117.235771,32.879353,0</coordinates>\\

9 </LinearRing></outerBoundaryIs></Polygon>"

scene2:

1 scene2_l,scene2_r

2 135,315

3 scene2,"32.879033 -117.235231"

4 http://www.svcl.ucsd.edu/~mulloy/Preview/02QN.jpg

5 CrowdCount

6 "<Polygon><outerBoundaryIs><LinearRing><coordinates>-117.235458,\\

7 32.879223,0 -117.23538,32.878948,0 -117.235092,32.879063,0 \\

8 -117.235222,32.87928,0 -117.235458,32.879223,0</coordinates>\\

9 </LinearRing></outerBoundaryIs></Polygon>"

and scene3:

1 scene3_l,scene3_r

2 0,180

3 scene3,"32.87974 -117.237554"

4 http://www.svcl.ucsd.edu/~mulloy/Preview/PTZLibraryWalkNorth.jpg
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5 CrowdCount

6 "<Polygon><outerBoundaryIs><LinearRing><coordinates>-117.237625,\\

7 32.879807,0 -117.237633,32.879551,0 -117.23744,32.879551,0 \\

8 -117.23748,32.879841,0 -117.237625,32.879807,0</coordinates>\\

9 </LinearRing></outerBoundaryIs></Polygon>"

It is important the Segment Name suffixes (e.g. _r,_l,_d, or _u) on the first line

end correctly and correspond to the class names during the People Counting System

setup in Section 3.3.3 on page 43.

4.1.4 Table2XML

This function extracts the most recent measurements of each scene from our

Fusion Table and creates an XML document for the purpose of webpage visualization

referencing via javascript.

#### e.g. $ python Table2XML.py

#### note: scenes to include in xml are specified in SCENES.csv

The following csv file (SCENES.csv) lists the scenes whose results we wish to visual-

ize.

1 scene1,scene2,scene3

4.2 Visual Demos

Using the above python functions, count results are easily queried. The follow-

ing demos rely on the functionality of the previous section.

4.2.1 Count Vectors

This is the first demonstration Prototype. Each scene is represented by a marker

on a Google Map. Projecting out from each marker are two vectors. The vector direc-

tions are determined by the class directions while the count of each class are mapped to
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their respective vector’s magnitude. In the electronic version, you can see the vectors

change in magnitude in realtime. Please refer to Figure 4.1.

4.2.2 Realtime Map and Trends

Please refer to Figures 4.2.

In our second demo protoype, we replace dynamic vectors for a heatmap so that we may

have a more intuitive comparison of scenes and perhaps causal relationships. Another

contrasting difference seen is the presence of a chart. This chart displays historical

trends of specific scenes. Scenes may be selected using a dropdown menu (See Figure

4.2). Also present is an Analytic selector. In the future, a visualization, such as this one,

will obtain more than only count data from each of these scenes (i.e. anomaly detection,

event recognition, or even comparison of counting methods.).

4.2.3 Zoomable Line Charts

Please refer to Figure 4.3.

In Demo 3 we implemented a zoomable line chart using Google’s Chart API. These

charts were generated using a URL submission query such as the following for Scene 1:

https://www.google.com/fusiontables/embedviz?

gco_displayAnnotations=true&gco_wmode=opaque&containerId=gviz_canvas

&rmax=250&q=select+col10%2C+col9+from+2416508+where+col6+contains+

’scene1’+and+col10+%3E+’02%2F20%2F2012’&qrs=+and+col10+%3E%3D+

&qre=+and+col10+%3C%3D+&qe=+order+by+col10+asc&viz=GVIZ&t=TIMELINE

&width=750&height=300
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(a) Demo 1 Grayscale Map

(b) Demo 1 Satellite

Figure 4.1: Visual Demo 1 - Count Vectors
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Figure 4.2: Realtime Map and Timeline (All Scenes) with Scene Selection and

popup window. Top, a realtime heatmap showing the spatial and count relationships

of scene areas. Popup window displays more information, such as a preview camera

view of scene. Bottom, a timeline with average pedestrian count versus time. URL:

http://www.svcl.ucsd.edu/projects/crowdanalytics/demos.html
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(a) 7-day Timeline

(b) 7-day Timeline

(c) 1-day Timeline

Figure 4.3: Visual Demo 3 - Zoomable Timelines
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4.2.4 Known Issues

It is possible that at times the police department may need to perform system

maintenance or replace cameras. Since DTMs are not viewpoint invariant, any changes

to viewpoint presets or camera calibration requires models to be retrained. Furthermore,

in compliance with Police department regulations, video is not kept in storage at SVCL

but rather discarded after analysis. Therefore, re-training can be a significant cost to

operating this system.

Furthermore, Fusion Table queries must be made at a frequency less than 5 times

a second, otherwise the server may fail to process queries. Additionally, Fusion Table

API limits the rows of Fusion Tables to 500 in the free version. However, in our sim-

ulations we have had little trouble exceeding this limit. However, there is a HTTP 500

error that will crash our simulations occasionally. This may be related to this limit. If

not, then the Google servers have a significant failure rate. Visualizations could be per-

formed on SVCL servers. However, Google’s Fusion Tables and Charts API Teams are

very active and provide unmatched functionality for free.



5 Future Work

5.1 Code Optimization

In our Analysis Module, there exist two core functions from the SVCL Matlab

repository that are compiled as stand-alone libraries. These functions are the Feature

Extractor and the Count Predictor. Although other Matlab functions and GUIs are used

in the training of our count and DTM models, these two functions are used in the real-

time processing flow and contribute the greatest time cost to our system. Re-writing

these two functions so they have no redundant calculations and are optimized for speed

would help meet a real-time processing demand with no lag time.

5.2 Other Counting Methods

Many fields of view are limited to open paths where pedestrian trajectories are

not confined to a space. In these quite frequently encountered situations, more tradi-

tional person-tracking algorithms would be better equipped to count pedestrians that

pass, say, an arbitrary line. Furthermore, for the sake of comparison all scenes should

utilize multiple counting methods.

Furthermore, we began work on creating a semi-supervised training method for

our mixture of dynamic textures. In this method, we employ not one mixture model for

all classes. But rather, we train an entire mixture model for each class, where each com-

ponent models sub-class motion. In this case, motion segmentation can be performed

similarly as before. However, rather than assigning pixels to the mixture component of

greatest MAP, we assign pixels to a model of greatest Likelihood.

56
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5.3 Suppressing Training Costs

The motion segmentation modeling we employed in this project assumes all

classes of motion exist in in each frame of our training and test clips. However, this

assumption is often not satisfied. Furthermore, there are many scenarios in which

the human-defined opposing motions are too similar or even mixed from our motion-

model’s perspective. For instance, modeling northward and southward pedestrian mo-

tions may be difficult with the prevalent motion of eastern/western motions or, more

subtly, southwestern/northeastern (and vice versa) motions.

Dr. Chan’s current motion segmentation method is insufficient for scenarios in

which a class of motion may be composed of multiple or even several sub-class motions;

not all of which possess sufficient dissimilarity to discriminate from other sub-classes.

For example, suppose our motion classes are (1) north motion and (2) south motion.

Sub-classes may include (a) pedestrians, (b) cyclists, (c) runners, (d) golf carts, (e) a

skewed direction such as northwestern rather than north.

To overcome these obstacles, we develop an experimental method of training the

subclasses independently (assuming their covariance is zero) and perform our class as-

signment based on maximum posterior probability of the query likelihood on all trained

classes. Although this method works under the more frequently satisfied assumption

that sub-class motion occurs without the presence of others in the field of view for a

significant duration, the implementation of this method is unfinished.

5.4 Suppressing Count Variance

Count estimates are calculated under the assumption that all objects in our field

of view are pedestrians. However, anomalies such as bicyclists, golf carts, and pedes-

trians with large objects do exist. Although these anomalies are sporadic and may be

acceptable, other sources of variance are more prevalent. For example, there are many

variations in how pedestrians are lighted, giving rise to shadows. Shadows do not affect

motion-based segmentation. However, they introduce error into many of our area-based

features, which may bias the count predictions upwards. To compensate for this preva-

lent bias, features may be weighted to suppress this shadow bias. These weights could be
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based on a shadow suppression model as in [25]. Alternatively, there exist many statues

on campus, whose shadows may support a realtime and more precise shadow suppres-

sion model. 3D models could be composed or roughly learned (via holography) for the

purpose of inferring lighting and cast shadow area. However, this latter suggestion is

only speculative, at present.

5.5 Control Theory

Our system, currently, is a single agent system. If we ignore the LSE in our

line plots, the only intelligent layer resides in the Analysis Module’s People Counting

Model. There are significant research efforts developing an additional agent at the Ac-

quisition level, whose goal it is to improve the allocation of limited resources and utility

viewpoints. This can be achieved by adding an intelligent control layer that may be in

charge of (1) prioritizing scenes, (2) creating new salient scenes, (3) combining salient

information from multiple viewpoints, and/or (4) search and track objects independent

of viewpoint and across a distributed camera network.

We direct the interested reader to two Associate Professors: (1) Amit K. Roy-

Chowdhury’s (UCR, Electrical Engineering) whose projects include an intelligent cam-

era network;[24] (2) Faisal Z. Qureshi (UOIT, Computer Science) whose work includes

various methods of Camera Control, Multi-Tasking, and Scheduling. Both gentlemen

co-organized the CVPR Workshop on Camera Networks and Wide Area Scene Analysis.

(Workshop URL: http://faculty.uoit.ca/qureshi/conferences/wcnwasa11 )

5.6 Viewpoint Invariance

Our Dynamic Texture approach to motion segmentation is robust to variations

in lighting and partial occlusions inherent of crowds. However, the assumption that our

viewpoints are constant is a heavy cost to a surveillance system that is shared, runs 24

hours a day 7 days a week and possesses PTZ cameras. System maintenance must be

performed. Although this is rare, when it happens this perturbs our viewpoints signifi-

cantly. Furthermore, keeping PTZ cameras stationary produces an excessive necessity
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for more cameras while additionally throwing away their capabilities. For these reasons,

viewpoint invariant motion models that cope with minor camera movement and/or inter-

polate adaptive model parameters for PTZ motion are system features highly valuable to

an intelligent camera network. As seen in a controlled and distributed camera network,

there is greater utility in PTZ cameras.[24]
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A Appendix - People Counting System

A.1 Compiled Matlab Programs

Our functions for setting up the counting system, feature extraction, and count

predictions require compilation in before being used in our automated system. Future

versions of these functions will be optimized in native C source code. [21]

peoplecnt_cmd [mode] [optionfile] a command-line program that runs the counting

system. The command takes two arguments: 1)

the operation, 2) the name of the options file.

[mode] may be: ’feature’, ’train’, ’predict’, or

’eval’.

peoplecntgui A GUI interface for setting up a counting sys-

tem.

A.2 Options File for Training People Counting Model

The following options structure is to be used in conjunction with the Matlab

People Counting stand-alone command-line program peoplecnt_cmd
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opt.mode the stage of the system to run: ’feature’, ’train’, ’predict’, or ’eval’

opt.basedir the base directory of the data. All filenames given in the configu-

ration file are relative to this directory.

opt.recompute Set to 1 to force the system to ignore the cache, i.e. recompute

everything. e.g. opt.recompute = 0;

opt.dirs Names of the directions of interest. These are one or two-letter

values, which should match the segmentation map file and ground-

truth file. e.g. opt.dirs = ’r’, ’l’; Here the directions are named ’r’

and ’l’ for "right" and "left". Note that ’t’ is a special direction

which corresponds to all foreground regions (i.e. all directions).

opt.update_flags flags to force an update on each stage: [feature, train, predict,

eval]. e.g. opt.update_flags = [0 1 0 0]; will force retraining the

system. In general, this should be set to opt.update_flags = [0 0 0

0];

opt.flag_usemat if 1, assume imgs and segms are .mat files. if 0 (the default), they

are dat files.

opt.flag_nogz if 1, do not gzip matlab file outputs. if 0 (the default), gzip output).

Set this to 1 on Windows if gzip is not installed.

opt.debug 1 = enable debugging mode (default = 0)

The following are set automatically in source code: opt.mode, opt.debug=0,

opt.flag_usemat=1, and opt.flag_nogz=0. We set opt.flag_usemat equal to zero in the

source code prior to compiling so that our videos may be in .dat format rather than in

the Matlab .mat format.[22]

Example options file:

ProjOptions
1 % Project file automatically generated by % peoplecntgui v1.01

2

3 % base directory for the experiment

4 opt.basedir =

5 ’/data4/home_new/mulloy/PeopleCnt/test’;

6

7 % set to 1, to force recomputing everything
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8 % (i.e. do not use cached values)

9 opt.recompute = 0;

10

11 % the region of interest file

12 opt.roiname = ’MetaData/vid_roi.mat’;

13

14 % the perspective map file

15 opt.pmapname = ’MetaData/vid_dmap.mat’;

16

17 % the segmentation map file

18 opt.segmmapname = ’MetaData/vid_segmmap.mat’;

19

20 % the directions

21 opt.dirs = {’d’, ’u’};

22

23 % the video files

24 opt.imgnames{1} = ’Data/vid0002.mat’;

25

26 % the segmentation files

27 opt.segmnames{1} = ’Data/vid0002_segm.mat’;

28

29 % file prefix for saving features

30 opt.featpref{1} = ’features/vid0001_feat’;

31 opt.featsuf = ’feat’;

32

33 % the ground truth files

34 opt.truthname{1} = ’

35 MetaData/vid0002_count_roi.mat’;

36

37 % evaluation set file

38 opt.evalname = ’MetaData/EvalSet1.mat’;

39

40 % the index of the evaluation set to use

41 opt.evalnum = 1;

42

43 % file prefix for saving models

44 opt.modelpref = ’models/model1’;

45
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46 % file prefix for saving predictions

47 opt.predpref = {};

48 opt.predsuf = ’pred1’;

49

50 % file prefix for saving model evaluation

51 opt.evalpref = ’results/eval1’;

52

53 % the feature set

54 opt.feature{1}.name = ’norm_area’;

55 opt.feature{1}.opt = [];

56 opt.feature{1}.sub = [];

57 opt.feature{2}.name = ’norm_perimeter’;

58 opt.feature{2}.opt = [];

59 opt.feature{2}.sub = [];

60 opt.feature{3}.name = ’norm_perimeterorient’;

61 opt.feature{3}.opt = 6;

62 opt.feature{3}.sub = [];

63 opt.feature{4}.name = ’norm_paratio’;

64 opt.feature{4}.opt = [];

65 opt.feature{4}.sub = [];

66 opt.feature{5}.name = ’norm_edge’;

67 opt.feature{5}.opt = [];

68 opt.feature{5}.sub = [];

69 opt.feature{6}.name = ’norm_edgeorient’;

70 opt.feature{6}.opt = 6;

71 opt.feature{6}.sub = [];

72 opt.feature{7}.name = ’norm_edgeminkowski’;

73 opt.feature{7}.opt = [];

74 opt.feature{7}.sub = [];

75 opt.feature{8}.name = ’norm_glcm’;

76 opt.feature{8}.opt = ’f’;

77 opt.feature{8}.sub = [3 4 5 8 9 10 13 14 15 18 19 20];

78

79 opt.model.name = ’gp’;

80 opt.model.namesuf = ’gp-lin-rbf’;

81 opt.model.norm = ’X’;

82 opt.model.param.covfunc =

83 {’covSum’, {’covSEiso_fast’, ’covLINone’, ’covNoise’}};
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84 opt.model.param.normmode = ’y’;

85 opt.model.param.numtrials = 1;
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