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Abstract

Main challenges in long-tailed recognition come from
the imbalanced data distribution and sample scarcity in
its tail classes. While techniques have been proposed to
achieve a more balanced training loss and to improve tail
classes data variations with synthesized samples, we resort
to leverage readily available unlabeled data to boost recog-
nition accuracy. The idea leads to a new recognition setting,
namely semi-supervised long-tailed recognition. We argue
this setting better resembles the real-world data collection
and annotation process and hence can help close the gap to
real-world scenarios. To address the semi-supervised long-
tailed recognition problem, we present an alternate sam-
pling framework combining the intuitions from successful
methods in these two research areas. The classifier and
feature embedding are learned separately and updated it-
eratively. The class-balanced sampling strategy has been
implemented to train the classifier in a way not affected by
the pseudo labels’ quality on the unlabeled data. A con-
sistency loss has been introduced to limit the impact from
unlabeled data while leveraging them to update the feature
embedding. We demonstrate significant accuracy improve-
ments over other competitive methods on two datasets.

1. Introduction
Large-scale datasets, which contain sufficient data in

each class, has been a major factor to the success of mod-
ern deep learning models for computer vision tasks, such as
object recognition. These datasets are usually carefully cu-
rated and balanced to have an uniform data distribution over
all classes. This balanced data distribution favors model
training but could be impractical in many real world ap-
plications, where the frequency of samples from different
classes can be imbalanced, leading to a long-tailed data dis-
tribution. As shown in Figure 1(b), several highly populated
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Figure 1. Comparison of different recognition paradigms: a) statis-
tics of CIFAR-10 when used as a Semi-supervised Recognition
benchmark; b) typical data distribution over classes in long-tailed
recognition; c) the proposed Semi-supervised long-tail recogni-
tion setting, in which both labeled and unlabeled subsets follow
the same underlying long-tailed data distribution.

classes take up most of the labeled samples, and some of the
classes only have very few samples during training.

The long-tailed recognition problem has been widely



studied in the literature. One major challenge in this set-
ting [16, 10, 28] to deep learning model training is the ten-
dency of under-fitting in less-populated classes. The root
causes of this under-fitting are the imbalanced training data
distribution as well as the scarcity of data samples in the tail
classes.

More specifically, with an imbalanced training data dis-
tribution, when several head classes take up most of the
training samples, tail classes contribute little in the training
loss. The model is such that biased towards head classes.
Prior works [14, 2, 10, 28] tried to mitigate the issue by
re-sampling the training data to be a balanced distribution
or calibrating the sample weights in calculating the loss.
However, still the scarcity of tail class data samples lim-
its the intra-class variations and overall recognition accu-
racy. Methods focusing on few-shot learning have been in-
troduced to address this problem through data augmentation
and data synthesis [23, 7, 15].

In this work, we resort to a different path to leverage
massive unlabeled real data in training to help improve the
long-tailed recognition accuracy. Since data collection is
much cheaper and accessible comparing to data annota-
tion, additional unlabeled real data could readily be avail-
able in many real-world scenarios. This semi-supervised
learning setting has been intensively studied in the litera-
ture [12, 18, 21, 1, 20]. However, as shown in Figure 1(a),
when we carefully look at the data distribution of the widely
used benchmarks, we observe well-balanced labeled subset
and unlabeled subset. As discussed above, the manually cu-
rated balanced distribution, can lead to a gap to real-world
scenarios. This is especially true in unlabeled data. With-
out labels, people have no way to balance the data among
classes.

In this paper, we propose a more realistic and challeng-
ing setting, namely semi-supervised long-tailed recogni-
tion. As shown in Figure 1(c), we assume a long-tailed data
distribution of the overall dataset and both the labeled and
unlabeled subsets of training data follow the same underly-
ing long-tailed data distribution. This setting generally re-
sembles a realistic data collection and annotation workflow.
After collecting the raw data, one has no knowledge of its
class distribution before annotation. As it is expensive to
annotate the full corpus, a common practice is to randomly
sample a subset for annotation under a given labeling bud-
get. When the raw data follows a long-tailed class distribu-
tion, we should expect the same in the labeled subset.

While this new recognition paradigm shares the chal-
lenges in both semi-supervised learning and long-tailed
recognition, there is no readily naive solution to it. Meth-
ods in long-tailed recognition rely on class labels to achieve
balanced training, which are not available in the unla-
beled portion in the semi-supervised long-tailed recogni-
tion. Prior semi-supervised methods without considering

the long-tailed distribution could fail as well.
Taking one of the competitive baseline methods for ex-

ample, Yang et al. [26] proposed to firstly train a recogni-
tion model with the labeled subset to generate pseudo labels
for the unlabeled subset, then the model is fine-tuned with
the full training dataset. However, when the labeled sub-
set follows a long-tailed distribution, the pseudo labels are
much less accurate for tail classes than head classes. As
a result, the overall pseudo labels quality could be too bad
to leverage (See Section 4.5 for results in CIFAR-10-SSLT
and ImageNet-SSLT).

To address the semi-supervised long-tailed recognition
problem, we present a method designed specifically for this
setting. We bring the successful class-balanced sampling
strategy and combined it with model decoupling in an alter-
nate learning framework to overcome the difficulty of bal-
ancing unlabeled training data.

Inspired by [10], we decouple the recognition model into
a feature embedding and a classifier, and train them with
random sampling and class-balanced sampling respectively.
As we are targeting at a semi-supervised setting, the classi-
fier is only trained on labeled data to get around the diffi-
culty of applying correctly class-balanced sampling on un-
labeled data, aligning with the intuition that the classifier
needs more robust supervision than the feature embedding.

After that, with the proposed alternative learning frame-
work, we improve model by updating the feature embed-
ding and the classifier iteratively. We assign pseudo la-
bels with the up-to-date classifier and observed gradually
improved accuracy of pseudo labels over iterations. The
pseudo labels are then incorporated in fine-tuning the fea-
ture embedding with a regularization term to limit its po-
tential negative impacts. Similar iterative design has been
proposed in semi-supervised learning literature [12, 21] but
important implementation details differ.

To summarize, in this paper, 1) we resort to semi-
supervised learning to help improve long-tailed recog-
nition accuracy and identify practical gap of current
semi-supervised recognition datasets due to their well-
balanced unlabeled subset; 2) we propose a new recogni-
tion paradigm named semi-supervised long-tailed recogni-
tion better resembling real-world data collection and anno-
tation workflow; 3) we propose a new alternative sampling
method to address the semi-supervised long-tailed recogni-
tion and demonstrate significant improvements on several
benchmarks.

2. Related Work
Long-tailed recognition has been recently studied a lot [25,
17, 14, 27, 16, 24]. Several approaches have been proposed,
including metric learning [17, 27], loss weighting [14], and
meta-learning [24]. Some methods design dedicated loss
functions to mitigate the data imbalanced problem. For



example, lift loss [17] introduces margins between many
training samples. Range loss [27] encourages data from the
same class to be close and different classes to be far away
in the embedding space. The focal loss [14] dynamically
balances weights of positive, hard negative, and easy nega-
tive samples. As reported by Liu et al [16], when applied
to long-tailed recognition, many of these methods improved
accuracy of the few-shot group, but at the cost of lower ac-
curacy over the many-shot classes.

Other methods, e.g. LDAM-DRW [2] replace cross-
entropy loss with LDAM loss. This adds a calibration factor
to the original cross-entropy loss. When combined with loss
re-weighting, it improves the accuracy in all splits in long-
tailed recognition. However, it can not be easily generalized
to semi-supervised learning. Because both the calibration
factor and the loss weight are calculated based on the num-
ber of samples of each class.

In face recognition and person re-identification, the
datasets are mostly with long-tailed distribution. LEAP [15]
augmented data samples from tail (few-shot) classes by
transferring intra-class variations from head (many-shot)
classes. Instead of data augmentation, we introduce un-
supervised data to improve the performance of long-tailed
recognition.

A recent work [26] rethinks the value of labels in imbal-
ance learning. As part of the discussion, semi-supervised
learning is included. However, only the basic pseudo label
solution and simple datasets, such as CIFAR and SVHN,
are discussed.

More recent works [10, 28] with improved long-tailed
recognition share the observation that feature embedding
and the classifier should be trained with different sampling
strategies. In this work, we adopt our method on this obser-
vation to learn the feature embedding model with random
sampling and train the classifier with class-balanced sam-
pling. This design is further closely compatible with semi-
supervised learning under alternate learning.
Semi-supervised learning has been extensively discussed
in recognition discipline [12, 18, 21]. One common obser-
vation is to optimize the traditional cross-entropy loss to-
gether with a regularization term that regulates the pertur-
bation consistency of unlabelled data.

Ladder net [18] is introduced to minimise the reconstruc-
tion loss between the network outputs from a given sample
and its perturbation. It is then simplified in [12] as two tem-
poral modules: Π-Model and Temporal Ensembling. The
Temporal Ensembling encourages the output of the network
from unlabeled data to be similar to its counterpart from
previous training epoch. More recently, Mean Teacher [21]
extends it by assembling along training. Instead of stor-
ing previous predictions, they assemble a Teacher model by
calculating the moving average of the training network, i.e.
the Student. The Teacher is then used to provide the consis-
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Figure 2. Initialization procedure. A recognition model is first
trained with random sampling. After that the feature embedding
is used to train a new classifier with class-balanced sampling. In
the diagram, CNN components that are updated during training are
highlighted in red.

tency of predictions to the Student.
In addition to that, MA-DNN [4] introduces a memory

module to maintain the category prototypes and provide
regularization for learning with unlabeled data. Label prop-
agation [13] is also considered with the help of label graph.
More recently, Mixmatch [1] and Fixmatch [20] improve
the performance by introducing powerful data augmenta-
tions and perturbation consistencies.

All the semi-supervised methods above do not separate
labeled data during semi-supervised training. In fact, it is
beneficial to combine labeled data and unlabeled data in
a certain proportion [12, 21]. However, without further
knowledge, we have no insight how to deal with this com-
bination when long-tailed distribution is included. Further-
more, long-tailed learning methods require calibration or re-
sampling based on the class distribution. This combination
of labeled and unlabeled data makes the distribution unsta-
ble. In result, this is not suitable for long-tailed recognition.

Recently, Salsa [19] proposes to decouple the supervised
learning from semi-supervised training. Our method fol-
lows the alternate training scheme from it, because it is sur-
prisingly compatible with long-tailed learning. In practice,
our method differs from Salsa in the following aspects.

First, we adopt class-balanced sampling in supervised
learning to deal with the long-tailed distribution. Second,
we use supervised learning instead of self-supervised learn-
ing as initialization. We find that self-supervised learn-
ing results in inferior performance in long-tailed scenario.
Third, the re-initialization is not needed. Because our ini-
tialization is already from supervised learning, there is not a
specific starting point to re-initialize the model. In fact, this
enhances the soft constraint between the two stages in [19].

With the models continuously optimized along alternate
learning, our method achieves superior performance while
maintains the same amount of training epochs as fine-tuning
simply on pseudo labels.

3. Method

In this section, we will introduce the proposed method
to semi-supervised long-tailed recognition. The semi-
supervised long-tailed recognition problem is first defined,
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Figure 3. Diagram of alternate learning. CNN modules in green line is only used in forwarding. Those in red are fine-tuned with the
corresponding loss. In Stage 1, samples from U are forwarded through f and g. U ′ consists of samples from U , and pseudo labels acquired
from g. In Stage 2, f and g′ are trained on the combination of D and U ′. In Stage 3, only the classifier g is trained. f is fixed and only
used in forwarding.

and some notations are clarified. The decoupling strategy
of long-tailed recognition is then discussed. This is also the
initialization phase of our method. After that, the alternate
learning scheme with 3 stages is fully discussed. The pro-
posed method is outlined in Algorithm 1.

3.1. Semi-supervised Long-tailed Recognition

We start by defining the semi-supervised long-tailed
recognition problem. Consider an image recognition prob-
lem with a labeled training set D = {(xi,yi); i =
1, . . . , N}, where xi is an example and yi ∈ {1, . . . , C}
its label, where C is the number of classes. For semi-
supervised learning, there is also an unsupervised training
subset U = {xi; i = 1, . . . ,M}.

Although the labels of data in U are not available, every
sample has its label from {1, . . . , C}. For class j, we have
nj samples from D and mj samples from U . With the as-
sumption that supervised and unsupervised data follow the
same distribution, we have the fact

nj
N

=
mj

M
, ∀j. (1)

The testing set, on the other hand, in order to evaluate
the performance on every class without bias, is balanced
sampled on all classes in {1, . . . , C}.

3.2. Model Decoupling and Data Sampling

A CNN model combines a feature embedding z =
f(x; θ) ∈ Rd, and a classifier g(z) ∈ [0, 1]C . Embed-
ding f(x; θ) is implemented by several convolutional lay-
ers of parameters θ. The classifier operates on the embed-
ding to produce a class prediction ŷ = arg maxi gi(z). In
this work, we adopt the popular linear classifier g(z) =
ν(Wx + b), where ν is the softmax function.

Standard (random sampling) training of the CNN lies on
mini-batch SGD, where each batch is randomly sampled
from training data. A class j of nj training examples has
probability nj

N of being represented in the batch. Without
loss of generality, we assume classes sorted by decreasing
cardinality, i.e. ni ≤ nj , ∀i > j. In the long-tailed setting,

where n1 � nC , the model is not fully trained on classes
of large index j (tail classes) and under-fits. This can be
avoided with recourse to non-uniform sampling strategies,
the most popular of which is class-balanced sampling. This
samples each class with probability 1

C , over-sampling tail
classes.

[10, 28] shows that while classifier benefits from class-
balanced sampling, feature embedding is more robust in
random sampling. Practically, [10] achieves this by decou-
pling the training into two stages, and train the feature em-
bedding with random sampling in the first stage, and classi-
fier the second with class-balanced sampling.

3.3. Initialization

The initialization of the proposed method follows the de-
coupling from [10]. The two-stage initialization is illus-
trated in Figure 2. A CNN model is first trained with ran-
dom sampling. A feature embedding z = f(x; θ) ∈ Rd,
and a classifier g′(z) ∈ [0, 1]C are acquired. After conver-
gence, the classifier is re-initialized and trained with class-
balanced sampling, with the feature embedding fixed. This
results in a class-balanced classifier g(z) ∈ [0, 1]C . Both
the feature embedding and the classifier are trained on the
supervised training subset D.

3.4. Alternate Learning

After obtaining an initialized model, most semi-
supervised learning methods fine-tune the model on a com-
bination of supervised and unsupervised samples. This
is, however, incompatible with our long-tailed recognition
model. When applied on unsupervised data, we have no
ground truth for class-balanced sampling. One can make
a sacrifice by relying on pseudo labels assigned by the ini-
tialized model. But the effectiveness will depend on the
accuracy of pseudo labels.

It is even worse when considering the fact that long-
tailed models usually have better performance on highly
populated classes and worse on few-shot classes. Class-
balanced sampling over-samples few-shot classes, while
down-samples many-shot. This means, in general, the



Algorithm 1 Alternate Learning for Semi-supervised Long-
tailed Recognition

1: Initialization:
Input: supervised training subset D
Output: feature embedding f , random-trained

classifier g′, class-balanced classifier g
A CNN model is trained with random sampling.

The feature embedding f is then used to train a new
classifier with class-balanced sampling.

2: Alternate Learning:
3: for i = 1, . . . , N do
4: Stage 1: Label assignment

f and g are used to assign labels to all samples
in the unlabeled subset U . The set U combined with
assigned labels is U ′

5: Stage 2: Semi-supervised training
Fine-tune f and g′ on the set D ∪ U ′. Random

Sampling is used to minimize the semi-supervised loss
Lsemi

6: Stage 3: Supervised training
Fine-tune g on the set D. Class-balanced Sam-

pling is used to minimize the supervised loss Lsup. f is
used to calculate features, but is not fine-tuned.

worse part of pseudo labels contributes more to the train-
ing loss than it should be, while the better part contributes
less.

Another difficulty is the model compatibility when com-
bining the long-tailed model to semi-supervised learning
methods. Many semi-supervised learning methods evolve
the model and pseudo labels at the same time. For example,
Mean Teacher [21] assembles the teacher model by moving
average and trains the student with consistency loss. When
it comes to long-tailed model, it is not clear when we should
update the feature embedding or classifier. And it is also dif-
ficult to incorporate both random and class-balanced sam-
pling.

Inspired by [19], which separates supervised learning
apart from semi-supervised learning, we propose an alter-
nate learning scheme. The supervised training on data D,
and semi-supervised training on data D ∪ U are carried out
in an alternate fashion together with model decoupling and
different data sampling strategies.

In practice, after initialization, we have a feature embed-
ding z = f(x; θ), a classifier g′(z) trained with random
sampling, and a classifier g(z) trained with class-balanced
sampling. In [10], only g(z) is used in testing. However, we
keep the randomly trained classifier g′(z) for further usage.
The training scheme iterates among 3 stages for N loops,
which are shown in Figure 3.
Stage 1: Label assignment. In this stage, pseudo labels
are assigned for the unsupervised subset U . The feature
embedding f(x; θ) and class-balanced classifier g(z) are

used. The choice of classifier is equivalent to the long-tailed
model when tested for better overall accuracy. The unsu-
pervised subset with pseudo labels is Û = {(xi, ŷi); i =
1, . . . ,M}, where ŷi are pseudo labels.
Stage 2: Semi-supervised training. After label assign-
ment, we have pseudo labels for all unsupervised data. The
model is the fine-tuned on the combination of true and
pseudo labels, i.e. on D ∪ Û . In this stage, random sam-
pling is used to update the feature embedding f(x; θ) and
the randomly-trained classifier g′(z). The classification is
optimized by cross-entropy loss:

LCE =
∑

(xi,yi)∈D∪Û

− log g′yi
(f(xi; θ)), (2)

where g′yi
is the yi-th element of g′.

In semi-supervised learning literature, a regularization
loss is usually applied to maintain the consistency for un-
labeled data. This consistency loss captures the fact that
data points in the neighborhood usually share the same la-
bel. We adopt this idea and implement the temporal con-
sistency from [12]. In practice, the class probabilities are
acquired from g′. Given the class probability pe−1 from
epoch e − 1, and the class probability pe from epoch e, the
loss is KL-divergence between the two.

Lconsist =
∑

(xi,yi)∈D∪Û

∑
j

pe−1j log
pe−1j

pej
, (3)

where pe−1j and pej are the j-th element of pe−1 and pe re-
spectively.

Overall, the semi-supervised learning loss is the combi-
nation of the two.

Lsemi = LCE + λLconsist. (4)

Stage 3: Supervised training. We update the class-
balanced classifier g(z) based on the refined feature embed-
ding, which is fine-tuned with semi-supervised learning in
Stage 2. Specifically, the fine-tuning is applied with class-
balanced sampling and only on the supervised subset D. In
this stage, only classifier is updated. The feature embed-
ding is fixed and only used in forwarding. Given the class-
balanced version of supervised subset D′, the cross-entropy
loss for classification is

Lsup =
∑

(xi,yi)∈D′

− log gyi
(f(xi; θ)), (5)

where gyi
is the yi-th element of g.

3.5. Insight of the Design

Feature embedding is trained with random sampling and
semi-supervised learning. This is consistent with long-
tailed model in the sampling scheme. It also follows the



fact that feature embedding is less prone to noisy labels.
Actually, in self-supervised learning literature [6, 8, 3], the
feature embedding can even be learned without labels.
Classifier is learned with class-balance sampling and only
supervised data. This is again the same as the supervised
version. And by avoiding fitting the classifier on pseudo la-
bels, we prevent the wrong labels from propagating through
the whole training process. Given the fact that the pseudo
labels are provided by the classifier, if classifier is still opti-
mize on those, wrong labels can be easily maintained in the
fine-tuned version of the classifier.

Training the classifier only on labeled data also avoids
the dilemma of class-balancing on unlabeled data. With-
out ground truth labels, class-balanced sampling can only
rely on pseudo labels, which are not perfect. And the fact
that pseudo labels have more errors on few-shot classes is
specially not suitable for class-balanced sampling. Because
when few-shot classes are over-sampled, those errors are
also scaled up during training.

4. Experiments

4.1. Datasets

We manually curate two semi-supervised long-tailed
recognition benchmarks.
CIFAR-10-SSLT. For easy comparison and ablation, we
compose a lightweight semi-supervised long-tailed dataset
based on CIFAR-10 [11]. Following [2], we randomly sam-
ple the training set of CIFAR-10 under an exponential func-
tion with imbalance ratios in {100, 1000} (the ratio of most
populated class to least populated). The unsupervised sub-
set is collected from Tiny Images [22] following the strat-
egy introduced in [26]. The class distribution of unlabeled
data is always the same as the labeled one, with 5 times
larger. For better description and comparison, we assign the
10 classes into 3 splits: many-shot, medium-shot, few-shot,
with many-shot the most populated 3 classes, medium-shot
the medium 3, and few-shot the least 4 classes.
ImageNet-SSLT. To evaluate the effectiveness of semi-
supervised long-tailed recognition methods on large-scale
datasets, we assemble a challenging dataset from ImageNet
(ILSVRC-2012) [5]. The supervised subset is sampled with
Lomax distribution with shape parameter α = 6, scale pa-
rameter λ = 1000. It contains 41, 134 images from 1000
classes, with the maximum of 250 images per class and
the minimum of 2 samples. The unsupervised subset is
sampled under the same distribution with an unsupervised
factor 4, i.e. |U| = 4|D|. The 1000 classes are divided
into 3 splits based on the amount of labeled data n: many-
shot (n > 100), medium-shot (10 < n ≤ 100), few-shot
(n ≤ 10). In result, the dataset has 140 many-shot, 433
medium-shot, and 427 few-shot classes. Methods are eval-
uated under all classes and each class split.

4.2. Network Architecture

ResNet-18 [9] is used on both CIFAR-10-SSLT and
ImageNet-SSLT for fast experiments and comparison.
ResNet-50 [9] is used on ImageNet-SSLT to show how
methods scale up to larger networks.

4.3. Comparison Methods

To our best knowledge, there is no available method des-
ignated for semi-supervised long-tailed recognition. We
explore typical long-tailed recognition methods and semi-
supervised recognition methods, and combine them as base-
lines.
Long-tailed Recognition. We consider two long-tailed
methods, one for loss calibration and the other for re-
sampling. LDAM-DRW [2] converts cross-entropy loss to
LDAM loss with calibration factors based on class counts.
It further regulates the loss with a loss weight also from
class counts. Decoupling [10] decouples the training of
embedding and classifier with different sampling strategies.
This is also the initialization in our method.
Semi-supervised Recognition. Pseudo-Label is a basic
semi-supervised learning algorithm and can be easily com-
bined with other models. It contains two phases. The first
phase is initialization, the recognition model is trained on
labeled data. Predictions of the initialized model are as-
signed on unlabeled data, i.e. pseudo labels. The initial-
ized model is then trained or fine-tuned on the combina-
tion of labeled and unlabeled data. In practice, we combine
Pseudo-Label method with the two long-tailed recognition
models to create two semi-supervised long-tailed recogni-
tion baselines. Pseudo-Label combined with LDAM-DRW
is the method used in [26].

Mean Teacher [21] is a well-known semi-supervised
learning method. It contains a Student model that is trained
with SGD and a Teacher model that is updated with moving
average of the Student. It is, however, unclear how to train
it with Decoupling. We only implement LDAM loss with
Student training.

4.4. Training Detail

In initialization, the feature embedding is trained with
200 epochs, and classifier is learned in 10 epochs after that.
Stage 2 contains 40 epochs of fine-tuning of the embedding
on the whole dataset. In 5 loops of stages, it is in total
200 epochs of embedding fine-tuning. There are also 10
epochs of classifier fine-tuning in Stage 3 per loop. In semi-
supervised learning loss (4), λ = 1 is used.

SGD optimizer with learning rate of 0.1 is used with co-
sine annealing during training in all stages. The momentum
is 0.9, and weight decay is 0.0005.

All comparison methods are implemented with the
hyper-parameters in their papers. The codes from authors
are used when available.



Table 1. Results(Accuracy in %) on CIFAR-10-SSLT. ResNet-18 is used for all methods.

Imbalance factor=100 Imbalance factor=1000
Method Overall Many-Shot Medium-Shot Few-Shot Overall Many-Shot Medium-Shot Few-Shot

LDAM-DRW (L) [2] 67.4 79.7 54.2 68.1 46.2 70.3 36.3 35.6
Pseudo-Label + L 69.6 69.7 55.1 80.2 48.4 74.0 39.3 36.0
Mean Teacher [21] + L 69.9 69.7 57.3 79.4 48.3 75.7 41.4 32.9
Decoupling (D) [10] 64.0 91.1 63.0 44.4 45.8 86.5 47.2 14.4
Pseudo-Label + D 68.9 92.7 70.8 49.8 46.5 89.0 47.0 14.2

Ours 71.3 89.5 67.7 60.2 66.7 84.4 69.4 51.4

Table 2. Results(Accuracy in %) on ImageNet-SSLT. ResNet-18/50 are used for all methods. For many-shot t > 100, for medium-shot
t ∈ (10, 100], and for few-shot t ≤ 10, where t is the number of labeled samples.

ResNet-18 ResNet-50
Method Overall Many-Shot Medium-Shot Few-Shot Overall Many-Shot Medium-Shot Few-Shot

LDAM-DRW (L) [2] 21.3 42.6 27.0 8.6 24.9 51.2 31.1 9.9
Pseudo-Label + L 17.6 22.4 20.9 12.6 23.9 44.0 30.0 11.1
Mean Teacher [21] + L 21.3 41.8 28.1 7.6 25.6 49.1 31.8 11.7
Decoupling (D) [10] 24.8 53.9 31.1 8.7 27.2 58.5 34.2 9.8
Pseudo-Label + D 25.3 47.6 32.1 11.1 27.7 52.2 34.7 12.4

Ours 26.5 52.0 33.9 10.7 29.0 57.1 36.5 12.3

4.5. Results

CIFAR-10-SSLT results are shown in Table 1 with imbal-
ance ratio 100 and 1000. Our methods outperforms all other
methods in overall accuracy.

Our initialized model is equivalent to Decoupling, which
shows the worst performance among all methods. Alternate
learning improves the overall performance more than 7%
when imbalance factor is 100, and 20% with imbalance fac-
tor 1000. Most of the improvement is from medium and
few-shot classes. The larger improvement on the more im-
balanced distribution shows that our method is more effec-
tive with more skewed dataset.

When Pseudo-Label is added upon Decoupling, around
5% improvement is achieved with imbalance factor 100.
But this improvement diminishes when the data is more im-
balanced. This implies the fact that Pseudo-Label is more
sensitive to bad tail class labelling.

With the improvement upon Pseudo-Label, our method
has the same amount of training epochs on unsupervised
data. The extra calculation in our methods compared to
Pseudo-Label is from Stage 1 and 2. However, the clas-
sifier training is only on supervised data, and only the linear
classifier is updated. And label assignment does not involve
any back-propagation. The extra time on these two stages
are trivial compared to the training of the whole model on
the whole dataset.

LDAM-DRW provides very competitive results without
any semi-supervised learning methods when imbalance fac-
tor is 100. However, it scales up bad when combined with
semi-supervised techniques. By adding Pseudo-Label, it
only improves 2% of overall accuracy. After looking at the

splits results, we find that it improves the few-shot perfor-
mance at the cost of many-shot. We believe this is because
the wrong balancing factor introduced in LDAM loss. It
does not match the true distribution, and skews the training
process. Mean Teacher makes little difference from Pseudo-
Label on LDAM-DRW.
ImageNet-SSLT results are shown in Table 2. Our meth-
ods outperforms all baseline methods with both ResNet-18
and -50 architectures. The ImageNet-SSLT setting is really
challenging that all of the methods give below 30% overall
accuracy. In fact, our method is the only one that improves
the few-shot performance while maintains the many-shot
accuracy.

On ImageNet-SSLT, Pseudo-Label based methods lose
efficacy, because it improves few-shot performance with
sacrifice on many-shot. This sacrifice is sometimes big,
such as Pseudo-Label+LDAM-DRW with ResNet-18. This
is not observed when Pseudo-Label is used on CIFAR-10-
SSLT, where it improves the many-shot performance. This
may be due to the bad many-shot pseudo-label quality on
ImageNet-SSLT. Unlike CIFAR-10-SSLT, where the initial-
ized model has 90% of accuracy on many-shot, many-shot
performance on ImageNet-SSLT is only around 50%. These
wrong labels can mislead the training and lower the perfor-
mance of Pseudo-Label methods. Our method, on the other
hand, updates the pseudo labels iteratively, and is less prone
to this problem.

Specifically, adding Pseudo-Label on LDAM-DRW de-
creases the overall performance. This can be explained by
the fact that the balancing factor in it does not match the true
distribution. Mean Teacher improves upon LDAM-DRW



when ResNet-50 is used. But it is still not as good as ours.

4.6. Ablations

We further study the training choices of alternate learn-
ing. This consists of two parts, i.e. the sampling choices
and semi-supervised learning choices. Results on CIFAR-
10-SSLT with imbalance factor 100 are listed in Table 3.
Sampling choice. Currently, during alternate learning we
use random sampling in Stage 2 and class-balance sam-
pling in Stage 3. This is consistent with long-tailed recog-
nition [10]. However, other combinations are possible. Re-
sults are listed in the first 3 lines of Table 3, with naming
format: {sampling in Stage 2}+{sampling in Stage 3}. In
method names, “R” stands for random sampling and “C”
stands for class-balanced.

None of the 3 alternatives can beat the initialized model
(Decoupling). This is expected. When the classifier is ran-
domly trained (“R+R” and “C+R”), the model performs
bad on few-shot classes. This will in turn harm the train-
ing of embedding by pseudo labels on unsupervised subset.
“C+C” trains the feature embedding with class-balanced
sampling. However, it is balancing on pseudo labels, which
can be wrong. The results show that this balancing yields
inferior feature embedding.
Semi-supervised learning choice. We train feature embed-
ding with the whole dataset, i.e. D ∪ U ′, and the classi-
fier with labeled subset D. Other combinations can also
be investigated. The classifier can also be semi-supervise
trained, i.e. on D ∪ U ′. At the same time, feature embed-
ding is trained with or without U ′. We show the results in
the last 2 lines of Table 3. In these two experiments, the
classifier is always trained on D ∪ U ′. The difference is
whether U ′ is used for embedding learning.

Compared to the regular setting, where the classifier is
trained on D, when we train it on D ∪ U ′, the performance
is slightly lower. This can be explained by the fact that
wrong pseudo labels in U ′ can be propagated through loops
if the classifier is optimized on them. This is especially true
for few-shot classes, where the accuracy is low. Because
of class-balanced sampling, the impact of few-shot classes
is amplified. When compared to Table 1, the main perfor-
mance drop is from few-shot classes. This confirms our
assumption.

However, when we further remove the unsupervised
training of embedding, the performance drops a lot. It is
even worse than the initialized model (Decoupling). In this
case, the feature embedding should be equivalent to that of
the initialization. The only difference is the classifier. This
further proves the fact that fine-tuning classifier on pseudo-
labels harms the performance.
Accuracy on unsupervised training subset. In Stage 1,
we assign pseudo labels for all samples in U . Table 4 re-
veals how the accuracy changes along loops in all splits.

Table 3. Ablation results(Accuracy in %) on CIFAR-10-SSLT, Im-
balance factor 100 is used. Sampling methods are denoted as R
for random, and C for class-balanced. The last two method names
shows where the embedding is trained.

Method Overall Many-Shot Medium-Shot Few-Shot

R + R 50.9 93.0 57.8 14.1
C + R 61.2 91.3 62.6 37.6
C + C 63.3 91.2 64.4 41.6

D ∪ U ′ 70.1 89.6 68.7 56.5
D 63.3 91.6 61.9 43.2

Table 4. Pseudo label accuracy on unlabeled training subset.
CIFAR-10-SSLT with imbalance ratio 100 is used. Compared
to testing set, the unsupervised subset is not balanced. In re-
sult, the overall accuracy is higher than that on testing set, be-
cause of the domination of many-shot classes. The results in
many/medium/few-shot splits are more useful.

Loop Overall Many-Shot Medium-Shot Few-Shot

0 87.7 92.3 63.0 41.8
1 87.9 92.3 64.0 48.1
2 87.8 92.1 64.7 52.2
3 87.8 91.8 65.3 55.8
4 87.7 91.6 65.8 57.8

Few-shot split performance improves much faster than oth-
ers. This proves the effectiveness of our alternate learn-
ing scheme, and explains why our method outperforms the
baselines by a large margin in few-shot classes.

The unsupervised subset has a long-tailed distribution,
so the overall performance is dominated by many-shot.
However, alternate learning still gets benefits from the im-
provement on few-shot split. Accuracy on different splits is
more useful when we analyze how the model evolves during
training.

5. Conclusion

This work introduces the semi-supervised long-tailed
recognition problem. It extends the long-tailed problem
with unsupervised data. With the property of labeled and
unlabeled data obeying the same distribution, this problem
setting follows the realistic data collection and annotation
workflow.

A method based on alternate learning is proposed. By
separating supervised training from semi-supervised and
decoupling the sampling methods, it incorporates the de-
coupling training scheme in long-tailed recognition with
semi-supervised learning.

Experiments show that the proposed method outper-
forms all current baselines. When results are split based
on class cardinality, the method exhibits its robustness to
defective pseudo labels. This is especially true for few-shot
classes.
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