
Solving Long-tailed Recognition with Deep
Realistic Taxonomic Classifier

Tz-Ying Wu, Pedro Morgado, Pei Wang, Chih-Hui Ho, and Nuno Vasconcelos

University of California, San Diego
{tzw001, pmaravil, pew062, chh279, nvasconcelos}@ucsd.edu

Abstract. Long-tail recognition tackles the natural non-uniformly dis-
tributed data in real-world scenarios. While modern classifiers perform
well on populated classes, its performance degrades significantly on tail
classes. Humans, however, are less affected by this since, when confronted
with uncertain examples, they simply opt to provide coarser predictions.
Motivated by this, a deep realistic taxonomic classifier (Deep-RTC) is
proposed as a new solution to the long-tail problem, combining realism
with hierarchical predictions. The model has the option to reject classify-
ing samples at different levels of the taxonomy, once it cannot guarantee
the desired performance. Deep-RTC is implemented with a stochastic
tree sampling during training to simulate all possible classification con-
ditions at finer or coarser levels and a rejection mechanism at inference
time. Experiments on the long-tailed version of four datasets, CIFAR100,
AWA2, Imagenet, and iNaturalist, demonstrate that the proposed ap-
proach preserves more information on all classes with different popularity
levels. Deep-RTC also outperforms the state-of-the-art methods in long-
tailed recognition, hierarchical classification, and learning with rejection
literature using the proposed correctly predicted bits (CPB) metric.

Keywords: realistic predictor, taxonomic classifier, long-tail recogni-
tion

1 Introduction

Recent advances in computer vision can be attributed to large datasets [16] and
deep convolutional neural networks (CNN) [32,42,53]. While these models have
achieved great success on balanced datasets, with approximately the same num-
ber of images per class, real world data tends to be highly imbalanced, with a
very long-tailed class distribution. In this case, classes are frequently split into
many-shot, medium-shot and few-shot, based on the number of examples [46].
Since deep CNNs tend to overfit in the small data regime, they frequently un-
derperform for medium and few-shot classes. Popular attempts to overcome this
limitation include data resampling [6, 8, 20, 30], cost-sensitive losses [14], knowl-
edge transfer from high to low population classes [46,60], normalization [38], or
margin-based methods [7]. All these approaches seek to improve the classification
performance of the standard softmax CNN architecture.

2 T.Y. Wu et al.

Mammal

Animal

Mexican Hairless Dog

Dog

Mammal for sure

Should be
a dog

Breed ? I only
know it is a dog

Class Taxonomy

Ground Truth Path
Other Paths

Fig. 1: Real-world datasets have class imbalance and long tails (left). Humans deal with
these problems by combining class taxonomies and self-awareness (right). When faced
with rare objects, like a “Mexican Hairless Dog”, they push the decision to a coarser
taxonomic level, e.g., simply recognizing a “Dog”, of which they feel confident. This is
denoted as realistic taxonomic classification to guarantee that all samples are processed
with a high level of confidence.

There is, however, little evidence that this architecture is optimally suited to
deal with long-tailed recognition. For example, humans do not use this model.
Rather than striving for discrimination between all objects in the world, they
adopt class taxonomies [4, 5, 36, 37, 56], where classes are organized hierarchi-
cally at different levels of granularity, e.g. ranging from coarse domains to fine-
grained ‘species’ or ‘breeds,’ as shown in Figure 1. Classification with tax-
onomies is broadly denoted as hierarchical . The standard softmax, also known
as the flat, classifier is a hierarchical classifier of a single taxonomic level. The
use of deeper taxonomies has been shown advantageous for classification by
allowing feature sharing [2, 27, 39, 45, 61, 64] and information transfer across
classes [17,48,51,52,63]. While most previous works on either flat or hierarchical
classification attempt to classify all images at the leaves of the taxonomic tree,
independently of how difficult this is, the introduction of a taxonomy enables
alternate strategies.

In this work, we explore a strategy inspired by human cognition and suited
for long-tailed recognition. When humans feel insufficiently trained to answer
a question at a certain level of granularity, they simply provide an answer to
a coarser level, for which they feel confident. For example, most people do not
recognize the animal of Figure 1 as a “Mexican Hairless Dog”. Instead, they
change the problem from classifying dog breeds into classifying mammals and
simply say it is a “Dog”. Hence, a long-tailed recognition strategy more consistent
with human cognition is to adopt hierarchical classification and allow decisions
at intermediate tree levels, to achieve two goals: 1) classify all examples with high
confidence, and 2) classify each example as deep in the tree as possible without
violating the first goal. Since examples from low-shot classes are harder to classify
confidently than those of popular classes, they tend to be classified at earlier
tree levels. This can be seen as a soft version of realistic classification [13, 57]
where a classifier refuses to process examples of low-classification confidence and

Deep Realistic Taxonomic Classifier 3

is denoted realistic taxonomic classification (RTC). The taxonomic extension
enables multiple “exit levels” for the classification, at different taxonomic levels.

RTC recognizes that, while classification at the leaves uncovers full label
information, partial label information can still be recovered when this is not
feasible, by performing the classification at intermediate taxonomic stages. The
goal is then to maximize the average information recovered per sample, favor-
ing correct decisions of intermediate level over incorrect decisions at the leaves.
We introduce a new measure of classifier performance, denoted correctly pre-
dicted bits (CPB), to capture this average information and propose it as a new
performance measure for long-tailed recognition. Rather than simply optimizing
classification accuracy at the leaves, high CPB scores require learning algorithms
that produce calibrated estimates of class probabilities at all tree levels. This is
critical to enable accurate determination of when examples should leave the tree.
For long-tailed recognition, where different images can be classified at different
taxonomic levels, this calibration is particularly challenging.

We address this problem with two new contributions to the training of deep
CNNs for RTC. The first is a new regularization procedure based on stochastic
tree sampling (STS), which allows the consideration of all possible cuts of the
taxonomic tree during training. RTC is then trained with a procedure similar to
dropout [55], which considers the CNNs consistent with all these cuts. The second
contribution addresses the challenge that RTC requires a dynamic CNN, capable
of generating predictions at different taxonomic levels for each input example.
This is addressed with a novel dynamic predictor synthesis procedure inspired by
parameter inheritance, a regularization strategy commonly used in hierarchical
classification [51, 52]. To the best of our knowledge, these contributions enable
the first implementation of RTC with deep CNNs and dynamic predictors. This
is denoted as Deep-RTC , which achieves leaf classification accuracy comparable
to state of the art long-tail recognition methods, but recovers much more average
label information per sample.

Overall, the paper makes three contributions. 1) we propose RTC as a new
solution to the long-tailed problem. 2) the Deep-RTC architecture, which imple-
ments a combination of stochastic taxonomic regularization and dynamic taxo-
nomic prediction, for implementation of RTC with deep CNNs. 3) an alternative
setup for the evaluation of long-tailed recognition, based on CPB scores, that
accounts for the amount of information in class predictions.

2 Related Work

This work is related to several previously explored topics.
Long-Tailed Recognition: Several strategies have been proposed to ad-

dress class unbalance in recognition. One possibility is to perform data resam-
pling [31], by undersampling head and oversampling tail classes [6, 8, 20, 30].
Sample synthesis [29, 65] has also been proposed to increase the population of
tail classes. Unlike Deep-RTC, these methods do not seek improved classification
architectures for long-tailed recognition. An alternative is to transfer knowledge

4 T.Y. Wu et al.

from head to tail classes. Inspired by meta-learning [58,59], these methods learn
how to leverage knowledge from head classes to improve the generalization of tail
classes [60]. [46] introduces memory features that encapsulate knowledge from
head classes and uses an attention mechanism to discriminate between head
and tail classes. This has some similarity with Deep-RTC, which also trans-
fers knowledge from head to tail classes, but does so by leveraging hierarchical
relations between them. Long-tailed recognition has also been addressed with
cost-sensitive losses, which assign different weights to different samples. A typi-
cal approach is to weight classes by their frequency [34, 47] or treat tail classes
as hard examples [19]. [14] proposed a class balanced loss that can be directly
applied to a softmax layer and focal loss [44]. These approaches can underper-
form for very low-frequency classes. [7] addressed this problem by enforcing large
margins for few-shot classes, where the margin is inversely proportional to the
number of class samples. While effective losses for long-tailed recognition are a
goal of this work, we seek losses for calibration of taxonomic classifiers, which
cost-sensitive losses do not address. Finally, inspired by the correlation between
the weight norm of a class and its number of samples, [38] proposed to adjust
the former after classifier training. All these approaches use the flat softmax
classifier architecture and do not address the design of RTC.

Hierarchical Classification: Hierarchical classification has received sub-
stantial attention in computer vision. For example, sharing information across
classes has been used for object recognition on large and unbalanced datasets [17,
48, 63], and defining a common hierarchical semantic space across classes has
been explored for zero-shot learning [3,50]. Some of the ideas used in this work,
e.g. parameter inheritance, are from this literature [18,51,52]. However, most of
them precede deep learning and cannot be directly applied to modern CNNs.
More recently, the ideas of sharing parameters or features hierarchically have
inspired the design of CNN architectures [2, 27, 39, 45, 61, 64]. Some of these do
not support class taxonomies, e.g. learning hierarchical feature structures for
flat classification [39, 50]. Others are only applicable to a somewhat rigid two-
level hierarchy [2, 61]. Closer to this work are architectures that complement a
flat classifier with convolutional branches that regularize its features to enforce
hierarchical structure [27, 45, 64]. These branches can be based on hierarchies
of feature pooling operators [27], or classification layers [45, 64] supervised with
labels from intermediate taxonomic levels. However, the use of additional layers
makes the comparison to flat classifier unfair, which would undermine an im-
portant goal of the paper: to investigate the benefit of hierarchical (over flat)
classification for long-tailed recognition. Hence, we avoid hierarchical architec-
tures that add parameters to the backbone network. These methods also fail
to address a central challenge of RTC, namely the need for simultaneous opti-
mization with respect to many label sets, associated with the different levels of
the class taxonomy. This requires a dynamic network, whose architecture can
change on-the-fly to enable 1) the use of different label sets to classify different
samples, and 2) optimization with respect to many label sets.

Deep Realistic Taxonomic Classifier 5

Learning with Rejection The idea of learning with rejection dates back
to at least [9]. Subsequent works derive theoretical results on the error-rejection
trade-off [10, 21], and explore alternative rejection criteria that avoid computa-
tion of class posterior probabilities [12, 13, 22]. Since the introduction of deep
learning has made the estimation of the posterior distribution central to clas-
sification, most recent rejection functions consist of thresholding posteriors or
derived quantities, such as the posterior entropy [24,25,57]. Alternative rejection
methods have also been proposed, including the use of relative distances between
samples [35], Monte-Carlo dropout [23], or classification model with a routing or
rejection network [11,25,57]. We adopt the simple threshold based rejection rule
of [24,25,57] in our implementation of RTC. However, rejection is applied to each
level of a hierarchical classifier, instead of once for a flat classifier. This resembles
the hedge your bets strategy of [15,18], in that it aims to maximize the average
label information recovered per sample. However, while [15, 18] accumulate the
class probabilities of a flat classifier, our Deep-RTC addresses the calibration of
probabilities throughout the tree. Our experiments show that this significantly
outperforms the accumulation of flat classifier probabilities. [15] further cali-
brates class probabilities before rejection, but calibration is only conducted a
posteriori (at test time). Instead, we propose STS for training hierarchical clas-
sifiers whose predictions are inherently calibrated at all taxonomic levels.

3 Long-tailed recognition and RTC

This section motivates the need for RTC as a solution to long-tailed recognition.
Long-tailed Recognition Existing approaches formulate long-tailed recog-

nition as flat classification, solved by some variant of the softmax classifier. This
combines a feature extractor h(x; Φ) ∈ Rk, implemented by a CNN of parame-
ters Φ, and a softmax regression layer composed by a linear transformation W
and a softmax function σ(·)

f(x; W,Φ) = σ(z(x; W,Φ)) z(x; W,Φ) = WTh(x; Φ). (1)

These networks are trained to minimize classification errors. Since samples are
limited for mid and low-shot classes, performance can be weak. Long-tailed recog-
nition approaches address the problem with example resampling, cost-sensitive
losses, parameter sharing across classes, or post-processing. These strategies are
not free of drawbacks. For example, cost-sensitive or resampling methods face a
“whack-a-mole” dilemma, where performance improvements in low-shot classes
(e.g. by giving them more weight) imply decreased performance in more popu-
lated ones (less weight). They are also very different from the recognition strate-
gies of human cognition, which relies extensively on class taxonomies.

Many cognitive science studies have attempted to determine taxonomic levels
at which humans categorize objects [4, 5, 36, 37, 56]. This has shown that most
object classes have a default level, which is used by most humans to label the
object (e.g. “dog” or “cat”). However, this so-called basic level is known to
vary from person to person, depending on the person’s training, also known as

6 T.Y. Wu et al.

Tree Hierarchy

𝒚𝟏

𝜽𝟏 𝜽𝟐
𝜽𝟑

𝜽𝟒 𝜽𝟓

𝒚𝟐

𝒚𝟑 𝒚𝟒

𝒏𝟎

𝒏𝟏 𝒏𝟐 𝒏𝟑

𝒏𝟒 𝒏𝟓

𝟏

𝟎

𝟎

𝟏

𝟎

𝒒𝒚𝟏

𝟏

𝟎

𝟎

𝟎

𝟏

𝒒𝒚𝟐

𝟎

𝟏

𝟎

𝟎

𝟎

𝒒𝒚𝟑

𝟎

𝟎

𝟏

𝟎

𝟎

𝒒𝒚𝟒

𝜽𝟏
𝑻𝒉

𝜽𝟐
𝑻𝒉

𝜽𝟑
𝑻𝒉

𝜽𝟒
𝑻𝒉

𝜽𝟓
𝑻𝒉

𝟏

𝟎

𝟎

𝟎

𝟎

𝒒𝒏𝟏

𝟎

𝟏

𝟎

𝟎

𝟎

𝒒𝒚𝟑

𝟎

𝟎

𝟏

𝟎

𝟎

𝒒𝒚𝟒

𝟎

𝟎

𝟎

𝟏

𝟎

𝒒𝒚𝟏

𝟎

𝟎

𝟎

𝟎

𝟏

𝒒𝒚𝟐

𝑸𝒏𝟎
𝑸𝒏𝟏𝑸𝒚𝒇𝒈

(𝜽𝟏+𝜽𝟒)
𝑻𝒉

(𝜽𝟏+𝜽𝟓)
𝑻𝒉

𝜽𝟐
𝑻𝒉

𝜽𝟑
𝑻𝒉

𝜽𝟏
𝑻𝒉

𝜽𝟐
𝑻𝒉

𝜽𝟑
𝑻𝒉

𝜽𝟒
𝑻𝒉

𝜽𝟓
𝑻𝒉

× × ×

𝚯𝑻𝒉

Global regularization

Internal Nodes
Classes (Leaves)

× Inner product

Local regularization

Fig. 2: Parameter sharing based on the tree hierarchy are implemented through the
codeword matrices Q. The training is regularized globally from the stochastically se-
lected label set and locally from the node-conditional consistency loss.

expertise, on the object class [4, 37, 56]. For example, a dog owner naturally
refers to his/her pet as a “labrador” instead of as “dog.” This suggests that even
humans are not great long-tail recognizers. Unless they are experts (i.e. have
been extensively trained in a class), they instead perform the classification at a
higher taxonomic level. From a machine learning point of view, this is sensible in
two ways. First, by moving up the taxonomic tree, it is always possible to find a
node with sufficient training examples for accurate classification. Second, while
not providing full label information for all examples, this is likely to produce a
higher average label information per sample than the all-or-nothing strategy of
the flat classifier [15,18]. In summary, when faced with low-shot classes, humans
trade-off classification granularity for class popularity, choosing a classification
level where their training has enough examples to guarantee accurate recognition.
This does not mean that they cannot do fine-grained recognition, only that this
is reserved for classes where they are experts. For example, because all humans
are extensively trained on face recognition, they excel in this very fine-grained
task. These observations motivate the RTC approach to long-tailed recognition.

Realistic Taxonomic Classification A taxonomic classifier maps images
x∈X into a set of C classes y ∈ Y∈{1, . . . , C}, organized into a taxonomic struc-
ture where classes are recursively grouped into parent nodes according to a tree-
type hierarchy T . It is defined by a set of classification nodes N ={n1, · · · , nN}
and a set of taxonomic relations A = {A(n1), · · · ,A(nN)}, where A(n) is the
set of ancestor nodes of n. The finest-grained classification decisions admitted
by the taxonomy occur at the leaves. We denote this set of fine-grained classes
Yfg = Leaves(T). Figure 2 gives an example for a classification problem with
|Yfg|= 4, |N |= 5, A(n4) = A(n5) = {n1} and A(ni) = ∅, i ∈ {1, 2, 3}. Classes
y1, y2 belong to parent class n1 and the root n0 is a dummy node containing
all classes. Note that we use n to represent nodes and y to represent leaf labels.
In RTC, different samples can be classified at different hierarchy levels. For ex-
ample, a sample of class y2 can be rejected at the root, classified at node n1,
or classified into one of the leaf classes. These options assign successively finer-
grained labels to the sample. Samples rejected at the root can belong to any
of the four classes, while those classified at node n1 belong to classes y1 or y2.
Classification at the leaves assigns the sample to a single class. Hence, RTC can

Deep Realistic Taxonomic Classifier 7

predict any sub-class in the taxonomy T . Given a training set D = {(xi, yi)}Mi=1

of images and class labels, and a class taxonomy T , the goal is to learn a pair
of classifier f(x) and rejection function g(x) that work together to assign each
input image x to the finest grained class ŷ possible, while guaranteeing certain
confidence in this assignment.

The depth at which the class prediction ŷ is made depends on the sample
difficulty and the competence-level γ of the classification. This is a lower bound
for the confidence with which x can be classified. A confidence score s(f(x)) is
defined for f(x), which is declared competent (at the γ level) for classification
of x, if s(f(x)) ≥ γ. RTC has competence level γ if all its intermediate node
decisions have this competence level. While this may be impossible to guarantee
for classification with the leaf label set Yfg, it can always be guaranteed by
rejecting samples at intermediate nodes of the hierarchy, i.e. defining

gv(x; γ) = 1[s(fv(x))≥γ] (2)

per classification node v, where 1[.] is the Kroneker delta. This prunes the hi-
erarchy T dynamically per sample x, producing a customized cut Tp for which
the hierarchical classifier is competent at a competence level γ. This pruning is
illustrated on the right of Figure 3. Samples that are hard to classify, e.g. from
few-shot classes, induce low confidence scores and are rejected earlier in the hi-
erarchy. Samples that match the classifier expertise, e.g. from highly populated
classes, progress until the leaves. This is a generalization of flat realistic classi-
fiers [57], which simply accept or reject samples. RTC mimics human behavior in
that, while x may not be classified at the finest-grained level, confident predic-
tions can usually be made at intermediate or coarse levels. The competence level
γ offers a guarantee for the quality of these decisions. Since larger values of γ
require decisions of higher confidence, they encourage sample classification early
in the hierarchy, avoiding the harder decisions that are more error-prone. The
trade-off between accuracy and fine-grained labeling is controlled by adjusting γ.
The confidence score s(·) can be implemented in various ways [11,25,57]. While
RTC is compatible with any of these, we adopt the popular maximum poste-
rior probability criterion, i.e. s(f(x)) = maxi f

i(x), where f i(·) is the ith entry
of f(.). In our experience, the calibration of the node predictors fv(x) is more
important than the particular implementation of the confidence score function.

4 Taxonomic probability calibration

In this section, we introduce the architecture of Deep-RTC.
Taxonomic calibration Since RTC requires decisions at all levels of the tax-

onomic tree, samples can be classified into any potential label set Y containing
leaf nodes of any cut of T . For example, the taxonomy of Figure 2 admits two la-
bel sets, namely, Yfg = {y1, y2, y3, y4} containing all classes and Y = {n1, y3, y4}
obtained by pruning the children of node n1. For long-tailed recognition, where
different images can be classified at very different taxonomic levels, it is impor-
tant to calibrate the posterior probability distributions of all these label sets. We

8 T.Y. Wu et al.

Node Cut

Generator

Random Cut

Generator

Full Tree 𝑻

Training

Pruned Tree 𝑻𝒄

𝒛𝟏

𝒛 𝒩|

𝒇𝟏

𝒇𝒩

𝒇𝒚

𝓛𝒏

𝓛𝒔𝒕𝒔

𝒛𝒚

⊗

⊗

⊗

𝐱 FE
ℎ(𝐱;𝚽)

Random Cut Generator

𝑷𝟐 = 𝟎

𝑷𝟑, 𝑷𝟒 = 𝟎 𝑷𝟑 = 𝟎

𝑷𝟏
𝑷𝟐 𝑷𝟑
𝑷𝟒

𝐈𝐧𝐩𝐮𝐭

Testing

𝒈𝟏
𝒈𝟐 𝒈𝟑
𝒈𝟒

Competence level 𝜸

Construct
Classification

Matrix 𝑾𝒚

Construct
Classification
Matrix 𝑾 𝓝

Construct
Classification

Matrix 𝑾𝟏

𝒈𝟑 = 𝟎

Fig. 3: Left: Deep-RTC is composed of a feature extractor, a node cut generator produc-
ing Yn =C(n) for all internal nodes and a random cut generator producing a potential
label sets Yc from Tc. Classification matrix WYc is constructed for each label set and
loss of (12) is imposed. Right: Rejecting samples at certain level during inference time.

address this problem by optimizing the ensemble of all classifiers implementable
with the hierarchy, i.e., minimize the loss

Lens = 1
|Ω|
∑
Y∈Ω LY , (3)

where Ω is the set of all target label sets Y that can be derived from T by pruning
the tree and LY is a loss function associated with label set Y. While feasible
for small taxonomies, this approach does not scale with taxonomy size, since
the set Ω increases exponentially with |T |. Instead, we introduce a mechanism,
inspired by dropout [55], for stochastic tree sampling (STS) during training. At
each training iteration, a random cut Tc of the taxonomy T is sampled, and
the predictor fYc

(x; WYc
,Φ) associated with the corresponding label set Yc is

optimized. For this, random cuts are generated by sampling a Bernoulli random
variable Pv ∼ Bernoulli(p) for each internal node v with a given dropout rate p.
The subtree rooted at v is pruned if Pv = 0. Examples of these taxonomy cuts
are shown in Figure 3. The predictor fYc of (1) consistent with the target label
set Yc associated with the cut Tc is then synthesized, and the loss computed as

Lsts = 1
M

∑M
i=1 LYc

(xi, yi). (4)

By considering different cuts at different iterations, the learning algorithm forces
the hierarchical classifier to produce well calibrated decisions for all label sets.

Parameter sharing The procedure above requires on-the-fly synthesis of
predictors fYc for all possible label sets Yc that can be derived from taxonomy
T . This implies a dynamic CNN architecture, where (1) changes with the sample
x. Deep-RTC is one such architecture, inspired by the fact that, for long-tailed
recognition, the predictors fYc

should share parameters, so as to enable infor-
mation transfer from head to tail classes [46, 60]. This is implemented with a
combination of two parameter sharing mechanisms. First, the backbone feature
extractor h(x; Φ) is shared across all label sets. Since this enables the implemen-
tation of Deep-RTC with a single network and no additional parameters, it is
also critical for fair comparisons with the flat classifier. More complex hierarchi-
cal network architectures [27, 45, 64] would compromise these comparisons and
are not investigated. Second, the predictor of (1) should reflect the hierarchical

Deep Realistic Taxonomic Classifier 9

structure of each label set Yc. A popular implementation of this constraint, de-
noted parameter inheritance (PI), reuses parameters of ancestors nodes A(n) in
the predictor of node n. The column vector wn of WY is then defined as

wn = θn +
∑
p∈A(n) θp , ∀n ∈ Y (5)

where θn are non-hierarchical node parameters. This compositional structure
has two advantages. First, it leverages the parameters of parent nodes (more
training data) to regularize the parameters of their low-level descendants (less
training data). Second, the parameter vector θn of node n only needs to model the
residuals between n and its parent, in order to be discriminative of its siblings.
In summary, low-level decisions are simultaneously simplified and robustified.

Dynamic predictor synthesis Deep-RTC is a novel architecture to enable
the dynamic synthesis of predictors fYc that comply with (5). This is achieved
by introducing a codeword vector qn ∈ {0, 1}|N | per node n, containing binary
flags that identify the ancestors A(n) of n

qn(v) = 1[v∈A(n)∪{n}]. (6)

For example, in the taxonomy of Figure 2, qn1
= (1, 0, 0, 0, 0) since A(n1) =∅,

and qn4
=(1, 0, 0, 1, 0) since A(n4)={n1}. Codeword qn encodes which nodes of

T contribute to the prediction of node n under the PI strategy, thus providing
a recipe for composing predictors for any label set Y. A matrix of node-specific
parameters Θ = [θ1, . . . , θ|N |] where θn ∈ Rk for all n ∈ N is then introduced,
and wn can be reformulated as

wn = Θqn. (7)

The codeword vectors of all nodes n ∈ Y are then written into the columns of a
codeword matrix QY ∈ {0, 1}|N |×|Y|, to define a predictor as in (1),

fY(x; Θ,Φ) = σ(zY(x; Θ,Φ)) zY(x; Θ,Φ) = WT
Yh(x; Φ), (8)

where WY = ΘQY . This enables the classification of sample x with respect to
any label set Yc by simply making QY a dynamic matrix QY(x) = QYc

, as
illustrated in Figure 3.

Loss function Deep-RTC is trained with a cross-entropy loss

LY(xi, yi) = −yTi log fY(x; Θ,Φ) , (9)

where yi is the one-hot encoding of yi ∈ Y. When this is used in (4), the CNN
is globally optimized with respect to the label set Yc associated with taxonomic
cut Tc. The regularization of the many classifiers associated with different cuts of
T is a global regularization, guaranteeing that all classifiers are well calibrated.
Beyond this, it is also possible to calibrate the internal node-conditional deci-
sions. Given that a sample x has been assigned to node n, the node-conditional
decisions are local and determine which of the children C(n) the sample should
be assigned to. They consider only the target label set Yn=C(n) defined by the

10 T.Y. Wu et al.

children of n. For these label sets, all nodes v ∈ C(n) share the same ancestor
set Av and thus the second term of (5). Hence, after softmax normalization, (5)
is equivalent to wv = θv and the node-conditional classifier fn(·) reduces to

fn(x; Θ,Φ) = σ(QT
n ΘT h(x; Φ)), (10)

where, as illustrated in Figure 2, the codeword matrix Qn contains zeros for all
ancestor nodes. Internal node decisions can thus be calibrated by noting that
sample xi provides supervision for all node-conditional classifiers in its ground-
truth ancestor path A(yi). This allows the definition of a node-conditional con-
sistency loss per node n of the form

Ln = 1
M

∑M
i=1

1
|A(yi)|

∑
n∈A(yi)

LYn(xi, yn,i) (11)

where LYn
is the loss of (9) for the label set Yn and yn,i the label of xi for the

decision at node n. Deep-RTC is trained by minimizing a combination of these
local node-conditional consistency losses and the global ensemble loss of (4)

Lcls = Ln + λLsts, (12)

where λ weights the contribution of the two terms.
Performance Evaluation Due to the universal adoption of the flat clas-

sifier, previous long-tailed recognition works equate performance to recognition
accuracy. Under the taxonomic setting, this is identical to measuring leaf node
accuracy E{1[ŷi=yi]} and fails to reward trade-offs between classification granu-
larity and accuracy. In the example of Figure 1, it only rewards the “Mexican
Hairless Dog” label, making no distinction between the labels “Dog” or “Taran-
tula,” which are both considered errors. A taxonomic alternative is to rely on
hierarchical accuracy E{1[ŷi∈A(yi)]} [18]. This has the limitation of rewarding
“Dog” and “Mexican Hairless Dog” equally, i.e. does not encourage finer-grained
decisions. In this work, we propose that a better performance measure should
capture the amount of class label information captured by the classification.
While a correct classification at the leaves captures all the information, a rejec-
tion at an intermediate node can only capture partial information. To measure
this, we propose to use the number of correctly predicted bits (CPB) by the
classifier, under the assumption that each class at the leaves of the taxonomy
contributes one bit of information. This is defined as

CPB = 1
M

∑M
i=1 1[ŷi∈A(yi)]

(
1− |Leaves(Tŷi)|

|Leaves(T)|

)
(13)

where Tŷi is the sub-tree rooted at ŷi. This assigns a score of 1 to correct clas-
sification at the leaves, and smaller scores to correct classification at higher tree
levels. Note that any correct prediction of intermediate level is preferred to an
incorrect prediction at the leaves, but scores less than a correct prediction of
finer-grain. Finally, for flat classifiers, CPB is equal to classification accuracy.

5 Experiments

This section presents the long-tailed recognition performance of Deep-RTC.

Deep Realistic Taxonomic Classifier 11

5.1 Experimental Setup

Datasets. We consider 4 datasets. CIFAR100-LT [14] is a long-tailed version
of [40] with “imbalance factor” 0.01 (i.e. most populated class 100× larger than
rarest class). AWA2-LT is a long-tailed version, curated by ourselves, of [41].
It contains 30 475 images from 50 animal classes and hierarchical relations ex-
tracted from WordNet [49], leading to a 7-level imbalanced tree. The training set
has an imbalance factor of 0.01, the testing set is balanced. ImageNet-LT [46]
is a long-tailed version of [16], with 1000 classes of more than 5 and less than
1280 images per class, and a balanced test set. iNaturalist (2018) [1, 33] is a
large-scale dataset of 8 142 classes with the class imbalance factor of 0.001, and
a balanced test set. While the full iNaturalist dataset is used for comparisons
to previous work, a more manageable subset, iNaturalist-sub, containing 55 929
images for training and 8 142 for testing, is used for ablation studies. Please refer
to supplementary material for more details.
Data partitions for long-tail evaluation The evaluation protocol of [46] is
adopted by splitting the classes into many-shot, medium-shot, and few-shot. The
splitting rule of [46] is used on iNaturalist. On CIFAR100-LT and AWA2-LT,
the top and bottom 1/3 populated classes belong to many-shot and few-shot
respectively, and the remaining to medium-shot.
Backbone architectures CIFAR100-LT and iNaturalist use the setup of [14],
where ResNet32 [32] and ImageNet pre-trained ResNet50 are used respectively.
For ImageNet-LT, ResNet10 is chosen as in [46]. For AWA2-LT, we use ResNet18.
Competence level Unless otherwise noted, the value of γ is cross-validated,
i.e. the value of best performance on the validation set is applied to the test set.

5.2 Ablations

We started by evaluating how the different components of Deep-RTC - param-
eter inheritance (PI) regularization of (5), node-consistency loss (NCL) of (11),
and stochastic tree sampling (STS) of (9) - affect the performance. Two baselines
were used in this experiment. The first is a flat classifier, implemented with the
standard softmax architecture, and trained to optimize classification accuracy.
This is a representative baseline for the architectures used in the long-tailed
recognition literature. The second is a hierarchical classifier derived from this
flat classifier, by recursively adding class probabilities as dictated by the class
taxonomy. This is denoted as the recursive hierarchical classifier (RHC). We
refer to this computation of probabilities as bottom-up (BU) inference. This is
opposite to the top-down (TD) inference used by most hierarchical approaches,
where probabilities are sequentially computed from the root (top) to leaves (bot-
tom) of the tree. The performance of the different classifiers was measured in
multiple ways. CPB is the metric of (13). Leaf acc. is the classification accuracy
at the leaves of the taxonomy. For a flat classifier, this is the standard perfor-
mance measure. For a hierarchical classifier, it is the accuracy when intermediate
rejections are not allowed. Hier acc. is the accuracy of a classifier that supports
rejections, measured at the point where the decision is taken. In the example of

12 T.Y. Wu et al.

Table 1: Ablations on iNaturalist-sub.
Method leaf acc. depth hier. acc. CPB inference

Flat classifier .163 1 .163 .163 -
RHC .163 .58 .754 .537 BU
PI+STS .174 .46 .913 .601 TD
PI+NCL .185 .48 .904 .563 TD
PI+STS+NCL (Deep-RTC) .181 .50 .899 .619 TD

Table 2: Comparisons to hierarchical classifiers.
Method CIFAR100-LT AWA2-LT ImageNet-LT inference

CNN-RNN [28] .379 .882 .514 TD
B-CNN [64] .366 .805 .511 TD/BU
HND [43] .374 - - TD
NofE [2] .373 .770 .463 BU

Deep-RTC .397 .894 .529 TD

Animal

Limoniumsea star

Plant

Plant

Tricholoma terreumStarflower

Fungi

Fig. 4: Prediction of Deep-RTC
(yellow) and flat classifer (gray)
on two iNaturalist-sub images (or-
ange: ground truth).

Figure 1 a decision of “dog” is considered accurate under this metric. Finally,
depth is the average depth at which images are rejected, normalized by tree
depth (e.g. 1 when no intermediate rejections are allowed).

CPB Performance: Table 1 shows that the flat classifier has very poor CPB
performance because prediction at leaves requires the classifier to make decisions
on tail classes where it is poorly trained. The result is a very large number of
errors, i.e. images for which no label information is preserved. RHC, its bottom-
up hierarchical extension, is a much better solution to long-tailed recognition.
While most images are not classified at the leaves, both hierarchical accuracy and
CPB increases dramatically. Nevertheless, RHC has weaker CPB performance
than the combination of the PI architecture of Figure 2 with either STS or NCL.
Among these, the global regularization of STS is more effective than the local
regularization of Ln. However, by combining two regularizations, they lead to
the classifier (Deep-RTC) that preserves most information about the class label.

Performance measures: The long-tailed recognition literature has focused on
maximizing the accuracy of flat classifiers. Table 1 shows some limitations of
this approach. First, all classifiers have very poor performance under this met-
ric, with leaf acc. between 16% and 18%. Furthermore, as shown in Figure 4, the
labels can be totally uninformative of the object class. In the example, the flat
classifier assigns the label of “sea star” (“star flower”) to the image of the plant
(mushroom) shown on the top (at the bottom). We are aware of no application
that would find such labels useful. Second, all classifiers perform dramatically
better in terms of hier. acc. For the practitioner, this means that they are accu-
rate classifiers. Not expert enough to always carry the decision to the bottom of
the tree, but reliable in their decisions. In the same example, Deep-RTC instead
correctly assigns the images to the broader classes of “Plant” (top) and “Fungi”
(bottom). Furthermore, Deep-RTC classifies 90% of the images correctly at this
level! This could make it useful for many applications. For example, it could be
used to automatically route the images to experts in these particular classes,
for further labeling. Third, among TD classifiers, Deep-RTC pushes decisions
furthest down the tree (e.g. 4% deeper than PI+STS). This makes it a better
expert on iNaturalist-sub than its two variants, a fact captured by the proposed
CPB measure. Given all this, we believe that CPB optimality is much more
meaningful than leaf acc. as a performance measure for long-tailed recognition.

Deep Realistic Taxonomic Classifier 13

Table 3: Results on iNaturalist. Classes are discussed
with popularity classes (many, medium and few- shot).

Method metric Many Medium Few All

Softmax CPB 0.76 0.67 0.62 0.66
CBLoss [14] 0.61 0.62 0.61 0.61
LDAM-SGD [7] - - - 0.65
LDAM-DRW [7] - - - 0.68
NCM [38] 0.61 0.64 0.63 0.63
cRT [38] 0.73 0.69 0.66 0.68
τ -norm [38] 0.71 0.69 0.69 0.69

Deep-RTC

CPB 0.84 0.79 0.75 0.78
hier. acc. 0.92 0.91 0.89 0.90
leaf freq. 0.71 0.56 0.48 0.54
leaf acc. 0.76 0.67 0.60 0.64

Table 4: Results on
ImageNet-LT.

Method CPB

FSLwF [26] 0.28
Focal Loss [44] 0.31
Range Loss [62] 0.31
Lifted Loss [54] 0.31
OLTR [46] 0.36
Softmax 0.35
NCM [38] 0.36
cRT [38] 0.42
τ -norm [38] 0.41

Deep-RTC 0.53

Table 5: Comparisons to learning with rejection under different rejection rates (CPB).
CIFAR100-LT AWA2-LT

Rej. Rate Method Many Medium Few All Many Medium Few All

5%
RP [57] .779 .722 .306 .404 .977 .963 .887 .914

Deep-RTC .773 .719 .335 .416 .975 .978 .907 .931

10%
RP [57] .793 .734 .315 .416 .980 .966 .900 .924

Deep-RTC .789 .7314 .344 .439 .975 .984 .929 .947

20%
RP [57] .816 .751 .328 .433 .985 .970 .916 .939

Deep-RTC .833 .770 .393 .491 .969 .975 .943 .954

5.3 Comparisons to hierarchical classifiers

We next performed a comparison to prior works in hierarchical classification
with CPB in Table 2. These experiments show that prior methods have similar
performance, without discernible advantage for TD or BU inference; however,
they all underperform Deep-RTC. This is particularly interesting because these
methods use networks more complex than Deep-RTC, adding branches (and
parameters) to the backbone in order to regularize features according to the
taxonomy. Deep-RTC simply implements a dynamic softmax classifier with the
label encoding of Figure 2. Instead, it leverages its dynamic ability and stochastic
sampling to simultaneously optimize decisions for many tree cuts. The results
suggest that this optimization over label sets is more important than shaping
the network architecture according to the taxonomy. This is sensible since, under
the Deep-RTC strategy, feature regularization is learned end-to-end, instead of
hard-coded. Details of the compared methods are in the supplementary material.

5.4 Comparisons to long-tail recognizers

A comparison to the state of the art methods from the long-tailed recognition
is presented in Tables 3-4 for iNaturalist and ImageNet-LT respectively. More
comparisons for other datasets are provided in the supplementary material. In
all cases, Deep-RTC predicts more bits correctly (i.e. higher CPB), which beats
the state of the art flat classifier by 9% on iNaturalist and 11% on ImageNet-
LT. For iNaturalist, we also discuss other metrics by class popularity, where leaf
freq. represents the frequency that samples are classified to leaves. A comparison

14 T.Y. Wu et al.

to the standard softmax classifier shows that prior long-tailed methods improve
performance CPB on few-shot classes but degrade for popular classes. Deep-
RTC is the only method to consistently improve CPB performance for all levels
of class popularity. It is also noted that, unlike the state of the art flat classifier,
Deep-RTC does not have to sacrifice leaf acc. for the many-shot classes in order
to accommodate few-shot classes where its performance will not be great anyway.
Instead, it exits early for about half of the images of the few-shot classes and
guarantees highly accurate answers for all classes (around 90% hier. acc.). This
is similar to how humans treat the long-tail recognition problem.

5.5 Comparisons to learning with rejection

While the classifiers of the previous sections were allowed to reject examples
at intermediate nodes, whenever feasible, they were not explicitly optimized for
such rejection. Table 5 shows a comparison to a state-of-the-art flat realistic
predictor (RP) [57], on CIFAR100-LT and AWA2-LT. In these comparisons, the
percentage of rejected examples (rejection rate) is kept the same. The rejection
rate of Deep-RTC is the percent of examples rejected at the root node. Deep-RTC
achieves the best performance for all rejection rates on both datasets, because
it has the option of soft-rejecting, i.e. letting examples propagate until some
intermediate tree node. This is not possible for the flat RP, which always faces
an all or nothing decision. In terms of class popularity, Deep-RTC always has
higher CPB for few-shot classes, and frequently considerable gains. For many
and medium-shot classes, the two methods have the comparable performance on
CIFAR100-LT. On AWA2-LT, RP has an advantage for many and Deep-RTC
for medium-shot classes. This shows that the gains of Deep-RTC are mostly due
to its ability to push images of low-shot classes as far down the tree as possible
without forcing decisions for which the classifier is poorly trained.

6 Conclusion

In this work, a realistic taxonomic classifier (RTC) is proposed to address the
long-tail recognition problem. Instead of seeking the finest-grained classification
for each sample, we propose to classify each sample up to the level that the clas-
sifier is competent. Deep-RTC architecture is then introduced for implementing
RTC with deep CNN and is able to 1) share knowledge between head and tail
classes 2) align data hierarchy with model design in order to predict at all levels
in the taxonomy, and 3) guarantee high prediction performance by opting to
provide coarser predictions when samples are too hard. Extensive experiments
validate the effectiveness of the proposed method on 4 long-tailed datasets using
the proposed tree metric. This indicates that RTC is well suited for solving long-
tail problem. We believe this opens up a new direction for long-tailed literature.
Acknowledgments This work was partially funded by NSF awards IIS-1637941,
IIS-1924937, and NVIDIA GPU donations.

Deep Realistic Taxonomic Classifier 15

References

1. inaturalist 2018 competition, https://github.com/visipedia/inat comp
2. Ahmed, K., Baig, M.H., Torresani, L.: Network of experts for large-scale image

categorization. In: European Conference on Computer Vision (ECCV) (2016)
3. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output em-

beddings for fine-grained image classification. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2015)

4. Anaki, D., Bentin, S.: Familiarity effects on categorization levels of faces and ob-
jects. Cognition (2009)

5. Anderson, J.: The adaptive nature of human categorization. Psychological Review
(1991)

6. Buda, M., Maki, A., Mazurowski, M.: A systematic study of the class imbal-
ance problem in convolutional neural networks. Neural Networks 106 (10 2017).
https://doi.org/10.1016/j.neunet.2018.07.011

7. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets
with label-distribution-aware margin loss. In: Advances in Neural Information Pro-
cessing Systems (NIPS) (2019)

8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic
minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (Jun 2002),
http://dl.acm.org/citation.cfm?id=1622407.1622416

9. Chow, C.K.: An optimum character recognition system using decision functions.
IRE Transactions on Electronic Computers EC-6, 247 – 254 (12 1957)

10. Chow, C.K.: On optimum recognition error and reject tradeoff. IEEE Transactions
on Information Theory 16, 41–46 (1 1970)

11. Corbiére, C., Thome, N., Bar-Hen, A., Cord, M., Pérez, P.: Addressing failure
detection by learning model confidence. In: Advances in Neural Information Pro-
cessing Systems (NIPS) (2019)

12. Cortes, C., DeSalvo, G., Mohri, M.: Boosting with abstention. In: Advances in
Neural Information Processing Systems (NIPS) (2016)

13. Cortes, C., DeSalvo, G., Mohri, M.: Learning with rejection. In: International Con-
ference on Algorithmic Learning Theory (ALT) (2016)

14. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on
effective number of samples. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2019)

15. Davis, J., Liang, T., Enouen, J., Ilin, R.: Hierarchical semantic labeling with adap-
tive confidence. In: International Symposium on Visual Computing (2019)

16. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2009)

17. Deng, J., Ding, N., Jia, Y., Frome, A., Murphy, K., Bengio, S., Li, Y., Neven, H.,
Adam, H.: Large-scale object classification using label relation graphs. In: Euro-
pean Conference on Computer Vision (ECCV) (2014)

18. Deng, J., Krause, J., Berg, A.C., Fei-Fei, L.: Hedging your bets: Optimizing
accuracy-specificity trade-offs in large scale visual recognition. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2012)

19. Dong, Q., Gong, S., Zhu, X.: Class rectification hard mining for imbalanced deep
learning. In: International Conference on Computer Vision (ICCV) (10 2017)

20. Drummond, C., Holte, R.: C4.5, class imbalance, and cost sensitivity: Why under-
sampling beats oversampling. Proceedings of the ICML’03 Workshop on Learning
from Imbalanced Datasets (01 2003)

16 T.Y. Wu et al.

21. El-Yaniv, R., Wiener, Y.: On the foundations of noise-free selective classification.
Journal of Machine Learning Research 11, 1605–1641 (5 2010)

22. Fumera, G., Roli, F.: Support vector machines with embedded reject option. Pat-
tern recognition with support vector machines 2388, 68–82 (7 2002)

23. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In: International Conference on Machine Learn-
ing (ICML) (2016)

24. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In:
Advances in Neural Information Processing Systems (NIPS) (2017)

25. Geifman, Y., El-Yaniv, R.: Selectivenet: A deep neural network with an integrated
reject option. In: International Conference on Machine Learning (ICML) (2019)

26. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (06
2018)

27. Goo, W., Kim, J., Kim, G., Hwang, S.J.: Taxonomy-regularized semantic deep con-
volutional neural networks. In: European Conference on Computer Vision (ECCV)
(2016)

28. Guo, Y., Liu, Y., Bakker, E.M., Guo, Y., Lew, M.S.: Cnn-rnn: a large-scale hi-
erarchical image classification framework. Multimedia Tools and Applications 77,
10251–10271 (2018)

29. Haibo He, Yang Bai, Garcia, E.A., Shutao Li: Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In: 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational Intelligence). pp.
1322–1328 (2008)

30. Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: A new over-sampling method
in imbalanced data sets learning. Advances in Intelligent Computing 3644, 878–
887 (09 2005)

31. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Transac-
tions on Knowledge and Data Engineering 21(9), 1263–1284 (Sep 2009).
https://doi.org/10.1109/TKDE.2008.239

32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

33. Horn, G.V., Aodha, O.M., Song, Y., Cui, Y., Sun, C., Shepard, A., abd Pietro Per-
ona, H.A., Belongie, S.: The inaturalist species classification and detection dataset.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

34. Huang, C., Li, Y., Loy, C.C., Tang, X.: Learning deep representation for imbalanced
classification. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016)

35. Jiang, H., Kim, B., Guan, M., Gupta, M.: To trust or not to trust a classifier. In:
Advances in Neural Information Processing Systems (NIPS). pp. 5541–5552 (2018)

36. Johnson, K.: Impact of varying levels of expertise on decisions of category typical-
ity. Memory & Cognition (2001)

37. Johnson, K., Mervis, C.: Effects of varying levels of expertise on the basic level of
categorization. J Experimental Psychology: General (1997)

38. Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., Kalantidis, Y.: De-
coupling representation and classifier for long-tailed recognition. In: International
Conference on Learning Representations (ICLR) (2020)

39. Kim, H.J., Frahm, J.M.: Hierarchy of alternating specialists for scene recognition.
In: European Conference on Computer Vision (ECCV) (2018)

40. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, Citeseer (2009)

Deep Realistic Taxonomic Classifier 17

41. Krizhevsky, A., Hinton, G.: Zero-shot learning—a comprehensive evaluation of the
good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine
Intelligence 41, 2251 – 2265 (9 2019)

42. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
(NIPS) (2012)

43. Lee, K., Lee, K., Min, K., Zhang, Y., Shin, J., Lee, H.: Hierarchical novelty detec-
tion for visual object recognition. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

44. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PP,
1–1 (07 2018). https://doi.org/10.1109/TPAMI.2018.2858826

45. Liu, Y., Dou, Y., Jin, R., Qiao, P.: Visual tree convolutional neural network in
image classification. In: International Conference on Pattern Recognition (ICPR)
(2018)

46. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed
recognition in an open world. In: IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2019)

47. Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe,
A., van der Maaten, L.: Exploring the limits of weakly supervised pretraining. In:
European Conference on Computer Vision (ECCV) (2018)

48. Marsza lek, M., Schmid, C.: Semantic hierarchies for visual object recognition. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)

49. Miller, G.A.: Wordnet: A lexical database for english. Communications of the ACM
38, 39–41 (11 1995)

50. Morgado, P., Vasconcelos, N.: Semantically consistent regularization for zero-shot
recognition. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017)

51. Salakhutdinov, R., Torralba, A., Tenenbaum, J.: Learning to share visual appear-
ance for multiclass object detection. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2011)

52. Shahbaba, B., Neal, R.M.: Improving classification when a class hierarchy is avail-
able using a hierarchy-based prior. Bayesian Analysis, 2(1):221–238 (2007)

53. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

54. Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: IEEE Computer Vision and Pattern Recognition
(CVPR) (2016)

55. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R.: Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research 15(56), 1929–1958 (2014),
http://jmlr.org/papers/v15/srivastava14a.html

56. Tanaka, J., Taylor, M.: Object categories and expertise: Is the basic level in the
eye of the beholder. Cognitive Psychology (1991), https://doi.org/10.1016/0010-
0285(91)90016-H

57. Wang, P., Vasconcelos, N.: Towards realistic predictors. In: European Conference
on Computer Vision (ECCV) (2018)

58. Wang, Y.X., Hebert, M.: Learning from small sample sets by combining unsu-
pervised meta-training with cnns. In: Advances in Neural Information Processing
Systems (NIPS) (2016)

18 T.Y. Wu et al.

59. Wang, Y.X., Hebert, M.: Learning to learn: Model regression networks for easy
small sample learning. In: European Conference on Computer Vision (ECCV)
(2016)

60. Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Advances
in Neural Information Processing Systems (NIPS) (2017)

61. Yan, Z., Zhang, H., Piramuthu, R., Jagadeesh, V., DeCoste, D., Di, W., Yu, Y.: Hd-
cnn: Hierarchical deep convolutional neural networks for large scale visual recog-
nition. In: International Conference on Computer Vision (ICCV) (2015)

62. Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition
with long-tailed training data. In: International Conference on Computer Vision
(ICCV) (2017)

63. Zhao, B., Fei-Fei, L., Xing, E.P.: Large-scale category structure aware image cate-
gorization. In: Advances in Neural Information Processing Systems (NIPS) (2011)

64. Zhu, X., Bain, M.: B-cnn: Branch convolutional neural network for hierarchical
classification. CoRR abs/1709.09890 (2017)

65. Zou, Y., Yu, Z., Vijaya Kumar, B., Wang, J.: Unsupervised domain adaptation for
semantic segmentation via class-balanced self-training. In: European Conference
on Computer Vision (ECCV) (2018)

