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ABSTRACT

Current digital video representations emphasize compres-
sion efficiency, lacking some of the flexibility required for
interactive manipulation of digital bitstreams. In this work,
we present a video representation which can encompass
both space and time, providing a temporally coherent de-
scription of video sequences. The video sequence is seg-
mented into its component objects, and the trajectory of
each object throughout the sequence is described paramet-
rically, according to a spatiotemporal motion model. Since
the motion model is a continuous function of time, the video
representation becomes frame-rate independent and tem-
poral resolution a user-definable parameter. I.e. the tra-
ditional sequence of frames, with temporal structure hard-
coded into the bitstream at the time of production, is re-
placed by a collection of scene snapshots assembled on the
fly by the decoder. This enables random access and tempo-
ral scalability, the major building blocks for interactivity.

1. INTRODUCTION

If there is a defining characteristic of digital communica-
tions media that characteristic is the potential for interac-
tivity - the ability of the user to actively search, browse
through or even produce information, instead of passively
“tuning in” to what is going on a broadcast channel [3].
Central to the idea of interactivity is the concept of random
access - the ability to decode a portion of the bitstream (e.g.
a frame in the case of a moving sequence) without having
to decode the information which is immediately before or
after. For example, browsing through digital video implies
the ability to skip frames, typically at a variable rate (which
decreases as the user approaches the point of interest), and
new information is many times created by editing (cutting
and pasting) video clips from different bit-streams into a
new presentation.

Unfortunately, random access is not easy to implement
with highly temporally localized digital video representa-
tions constructed upon motion estimation based on frame-
pairs. Under the “frame-pair” paradigm, decoding a given
frame in the bit-stream implies decoding information rel-
ative to (and usually even reconstructing) all the frames
between that and a reference frame (access point) whose
location was arbitrarily assigned at the time of encoding.
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This imposes a significant computational burden on tasks
such as fast-forward, reverse play or cutting and pasting
video clips.

In [6], we introduced a spatiotemporal motion represen-
tation that, by relaxing the temporal localization of mo-
tion estimation, allows a coherent description of motion
throughout a sequence of frames, avoiding the limitations
inherent to the “frame-pair” paradigm. In this framework,
time is a variable of a parametric spatiotemporal motion
representation, and decoding a single frame or a set of non-
consecutive frames requires no more effort than when they
are decoded in the ordinary playing order. In fact, such a
representation can be considered as frame-free: it is approx-
imately as hard to reconstruct frames at a pre-determined
temporal rate as it is to reconstruct a synthetic version at
a different frame-rate. Thus, the representation becomes
frame-rate independent, and temporal resolution becomes
a parameter defined by the user according to display device
and processing capabilities.

The main limitation of our previous work was, however,
an implicit assumption of a single moving object and no
occlusions. Although the system was made robust by in-
cluding a delayed decision estimation procedure, it did not
rely on any segmentation procedures, and as such could not
handle scenes with multiple objects or object occlusions.
These issues are addressed in this paper, where we present
a generic implementation of the spatiotemporal representa-
tion.

2. SPATIOTEMPORAL MODEL-BASED OPTIC
FLOW

The core of our system is the multi-frame optic flow esti-
mator that was presented in [6], and which we now briefly
review. This optic flow estimator is based on the concept of
motion paths, p&’ = (mf@t),y,(f))T, the locus of coordinates
in the image plane onto which each point « in the 3D world
is projected as time evolves. We approximate the projec-
tion of the true motion on the camera plane by a quadratic
trajectory in time
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where vz, vy, az, and ay are the horizontal and vertical com-
ponents of the velocity and acceleration associated with mo-



tion path &, and a first-order affine transformation in space
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I.e. we assume the motion of each object to be characterized
by an affine transformation between successive frames, but
where each point follows a quadratic trajectory in time,
so that the resulting motion estimates are continuous and
coherent across several frames.

Two theoretical results were shown in [6]: 1) equations 1
and 2 can hold simultaneously if and only if the velocity and
acceleration that characterize the motion paths are them-
selves affine transformations of the image coordinates (i.e.
planes in velocity and acceleration space)
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2) given a set of motion vectors, the least squares fit to
the spatiotemporal motion model is separable in time and
space; and can be obtained by first finding the best fit to
the velocities and accelerations of all the paths (accord-
ing to equation 1), and then finding the least squares ap-
proximation to the spatiotemporal parameters according to
equation 3.

3. MULTIPLE OBJECTS AND OCCLUSIONS

Whenever there is motion, there are regions which become
visible and regions which are occluded. Occlusions make
the task of building initial path estimates (on which the
least squares fit of the previous section is performed) signif-
icantly difficult. If a pixel is occluded in a given frame, the
associated motion vector will be unavailable, and an algo-
rithm which tracks the motion of that pixel by following the
cascade of motion vectors across the sequence will originate
incorrect estimates.

The problem is avoided if one relies on a parametric
approximation of the flow-field, such as the affine motion
model. As long as the affine approximation is a reasonable
one and occluded regions are small in comparison to the
visible ones, a least squares affine fit is an equally good
approximation to the motion of both occluded and visible
areas'. Thus, given the knowledge that a point is associated
with an object and the affine parameters that describe the
motion of that object throughout the sequence, the motion
of the point between any two frames is computable even if
the point is occluded in frames between them.

An additional problem posed to a spatiotemporal video
representation is the determination of the reference frame
which will be used as a starting point for the spatiotemporal
trajectories, and from which the remaining frames of the
sequence will be reconstructed. Clearly, any frame will have
occluded regions which will not be represented well if that
frame is chosen as reference. Also, different portions of the
scene may be captured with different spatial resolutions as

INotice that this is true for any parametric representation,
not a particular property of the affine approximation.

the sequence progresses (e.g. if the camera “zooms in”), and
one would like to chose the reference frame so that spatial
resolution is fully exploited.

A layered representation [7] is an elegant solution to
these problems. In this approach, each object is associated
with a different image layer where the information about
the object is accumulated as the scene progresses. If cer-
tain regions of the scene are captured in higher detail as
the sequence progresses, the corresponding layer will have
higher resolution in those regions. Since the layer accumu-
lates information across the entire sequence, it will contain
information that was not visible as a whole in any of the
frames of the original sequence. Finally, the layered repre-
sentation is a natural one when parametric motion repre-
sentations, such as the discussed above, are required. For
all these reasons, we use the layered representation to gener-
ate our reference images and bootstrap the spatiotemporal
representation.

4. THE SPATIOTEMPORAL
REPRESENTATION

In this section, we describe the algorithm that computes the
reference images and motion parameters of the spatiotem-
poral representation.

4.1. Image layers

As mentioned above, we start by building a set of object lay-
ers using a procedure similar to that of [7]. For each frame-
pair we compute the respective optic flow, using a standard
“sum of squared differences” estimator [1]. We then use a
procedure based on the expectation-maximization (EM) al-
gorithm [2] to simultaneously compute the segmentation of
each image-pair into the objects which compose it, and es-
timate the affine parameters for the motion of each object?.
Next, we use a procedure similar to that proposed in [7] to
integrate information across the image sequence and build a
layer, or reference image, for each of the segmented objects.
At this point, we have built the layered representation and
are ready to estimate the spatiotemporal motion parame-
ters.

4.2. Estimation of motion parameters

Since the least-squares fit to this model is separable in space
and time, we start by finding the parameters of equation 1
for all the motion paths originated by a given object. For
each point in the object’s reference image, we first deter-
mine the corresponding trajectory across the sequence by
following the cascade of motion vectors that starts at this
point. Notice that, since we are relying on a parametric ap-
proximation of the optic flow, this process is reliable even

2The EM algorithm is a statistical tool for maximum-
likelihood estimation from incomplete data that, when applied
to motion estimation, results in an iterative procedure composed
of two steps: the expectation step where, given a set of motion
parameters, a segmentation mask is computed; and the maxi-
mization step where, given the segmentation mask, the motion
parameters are updated in order to maximize the likelihood of
the observed data [5].



when the point is occluded during a portion of the trajec-
tory.

Once the trajectory is determined, we find its velocity
and acceleration parameters (equation 1) using standard
least-squares methods [4]. Defining At¢; as the temporal dis-

tance between image ¢ and the reference image, and Azl
as the corresponding horizontal displacement of the point
in the image plane, the least-squares estimates of the tra-
jectory’s horizontal® acceleration and velocity are given by
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Finally, given the value of the temporal velocity and
acceleration estimates for all the points in the reference im-
age, we find the set of spatiotemporal motion parameters
that optimally satisfy equation 3 in the least-squares sense.
Defining the vector of spatiotemporal motion parameters
Ao = (am,amy,azo,vm,vmy,vmo)T, the matrix of refer-
ence coordinates for each trajectory
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and the regressor matrix N = (Pi,...,P,)T, the least
squares estimate of the motion parameters is

Ao = (NIN)INTF, (5)

The temporal and spatial least-squares fits are described in
more detail in [6].

5. SIMULATION RESULTS

In order to demonstrate the frame-rate independence of the
spatiotemporal representation, we used it to synthesize a
video sequence at new frame rates. The left column of fig-
ure 1 presents two frames of the sequence, and the asso-
ciated segmentation mask. The right column of the figure
presents three frames of the sequence reconstructed from
the spatiotemporal representation. The top and bottom
images are the reconstruction of the images to their left,
while the image in the center is temporally located between
the other two and did not exist in the original sequence.

The reconstructed sequence is a good approximation of
the original, and there is no significant difference in qual-
ity between the reconstructed frames which are temporally
co-located with those in the original sequence and the new
frame. There are some artifacts in the region of the tree
branches, and on the border between the houses and the
sky. These are mostly due to segmentation noise, in particu-
lar pixels which are assigned to different layers in successive
frames. We are currently investigating more robust segmen-
tation schemes where the spatiotemporal motion model is
used to enforce temporal segmentation consistency.

When viewed in a display device, the synthetic sequence
has a much finer motion rendition than the original. This is
illustrated in figure 4, where spatiotemporal slices of both

3Here, we analyze only the least squares fit to the £ compo-
nent, the results are similar for the y component.

sequences are shown. These slices were created from the
spatiotemporal volume associated with the sequence (ob-
tained by stacking several consecutive frames) by cutting a
2D slice parallel to the horizontal axis. The higher resolu-
tion of the synthetic sequence is clear from the figure.

Notice that all the frames shown in the right column
of figure 1 are obtained by warping the reference images.
Le. it is not necessary to fully reconstruct the two frames
of the original sequence in order to synthesize a new frame
between them.

6. CONCLUSIONS

In the digital communications world of ubiquitous network-
ing and computational power, video production is moving
from the studio to the home. This shift is, however, dif-
ficulted by current digital video representations (such as
MPEG) which, being based on a highly temporally local-
ized processing paradigm, are poorly suited for tasks in-
volving the interactive manipulation of digital bitstreams.
In this paper, we address this issue by proposing a new
representation based on spatiotemporal objects, or image
layers, which allows the decoder to define parameters such
as display rate as variables of the decoding process, and
moves away from the traditional rigid frame structure.
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Figure 1: Left: Two consecutive frames of “flower garden” and corresponding segmentation mask. Right: Reconstructed frames. The
middle image of the right column did not exist in the original sequence.

50 100 150 200 250 300 350 00 450 50 100 150 200 250 300 350 400 450

Figure 2: Spatiotemporal slices of the original (left) and synthetic (right) sequences. These slices are parallel to the horizontal axis,
depicting the motion of the tree and part of the flower bed. For clarity, they were magnified by a factor of four in both dimensions.



