Appears in Proc. IEEE Conference in Computer Vision and Pattern Recognition, Kauai, Hawai, 2001

|mage Indexing with Mixture Hierarchies

Nuno Vasconcelos
Compag Computer Corporation
Cambridge Research Laboratory
nuno. vasconcel os@onpaqg. com

Abstract

We present an image indexing method based on a hierarchi-
cal description of the density of each of the image classes
in a given database. The method is similar in spirit to tra-
ditional agglomerative clustering procedures but produces a
complete mixture density, instead of a representative point,
at each node of the indexing tree. Estimation of the den-
sity at a given node only requires knowledge of the mix-
ture parameters of the children nodes, not the original data.
The process is very flexible and efficient, therefore suited to
problems involving large databases where existing group-
ings may have to be combined, or new groupings created,
frequently. Experimental results show that the new index-
ing structure consistently outperforms a linear search when
both efficiency and retrieval accuracy are taken into ac-
count.

1 Introduction

A significant amount of work has been recently devoted to
the topic of image retrieval in the vision and image process-
ing literatures. While substantial attention has been devoted
to aspects such as finding suitable features [9], robust repre-
sentations for visual appearance [13, 5], appropriate metrics
of similarity [11], and relevance feedback mechanisms [6],
much smaller progress has been achieved on the indexing
problem, i.e. the development of mechanisms that guaran-
tee sub-linear complexity in the database size. In fact, the
assumption that a linear search through the entire database
is acceptable is still commonly adopted. When indexing
mechanisms are employed, they tend to be standard solu-
tions from the database and text retrieval literatures, e.g.
filtering [4], combination of scalar indexes via join opera-
tions [12], or traditional clustering techniques [9, 17]. When
applied to image data these techniques present various lim-
itations, such as not scaling well with the dimension of
the feature space, not providing sub-linear growth on the
database size, or not being able to accommodate feature rep-
resentations other than points on a metric space.

Even more problematic is the assumption that indexing

must always be driven by visual similarity. We contend
that this is not really the case, since indexes can also be
derived from image groupings determined by other infor-
mation sources. Some examples are:

e text: probably the most common. Images can be la-
beled either manually or automatically by analyzing
associated documents, e.g. web pages.

e image acquisition: most digital imaging devices pos-
sess some sense of context, e.g. date or GPS informa-
tion, which is stored in image headers.

e automatic grouping: can be generated in multiple
ways. For example, it is relatively easy to segment a
video stream into its component shots.

Particularly interesting are those scenarios where group-
ings are not obtained by visual similarity but reflect some
sort of semantic image categorization. Using semantic
groupings to constrain the visual similarity search has var-
ious benefits. First, retrieval accuracy is likely to increase,
since semantic similarity is usually what users are looking
for. Second, even when there are errors, if the images are
returned according to the grouping structure, the results ap-
pear coherent. E.g. if in response to a query for birds the
system returns all images or airplanes followed by all im-
ages of birds, the results are easier to interpret (“it thinks
that airplanes are birds™) than if images of birds, airplanes,
helicopters, and a few other classes all appear interspersed.
This coherence leads to less confusing interaction for naive
users. Third, there is more flexibility for interface design.
For example, a mode where only a representative picture
from each class is returned, allowing the user to quickly
zoom in on the classes of interest and limiting subsequent
searches to those.

When such class groupings exist (or even if they are de-
rived from image similarity) it makes sense to rely on hier-
archical indexing mechanisms. The basic idea is to group
images into classes and then perform queries at the class
level instead of the image level. Once the class that best
explains the query is identified, the images belonging to
that class can be searched for the best match. The process

can, of course, be iterated by grouping classes into meta-
classes and so on. In the extreme, a complete tree can be
built. If there are I images and, on average, C images are
grouped into each class a tree search will have complexity
O(ClogI) instead of O(I).

The main limitation of traditional hierarchical indexing
mechanisms, e.g. hierarchical clustering, is their inability
to deal with representations other than points. For image
databases this implies one of two approaches: segmenting
each image into smaller regions that can be represented as
vectors and indexed individually [9], or compressing that
image into a global description that can be stored as a
vector, e.g. a color histogram [17, 7]. Both approaches
have significant problems: indexing of individual segments
makes the problem yet more complicated (because there
are many more of them) and creates serious difficulties for
queries involving more than one segment; global descrip-
tions by a single vector tend to discard too much informa-
tion and can hurt retrieval performance.

This paper extends hierarchical indexing techniques, e.g.
agglomerative clustering, to functional image descriptors,
namely the complete probability density function of the fea-
tures extracted from each image class. This description
combines the advantages of the two previous approaches:
on one hand a detailed characterization of local appearance
is still available (through the feature values), on the other
that characterization is summarized into a compact repre-
sentation (via a probability density). When compared to
color histograms, the feature densities now considered have
the additional advantage of capturing properties like tex-
ture or local surface curvature, therefore providing a sig-
nificantly more accurate image representation [14].

We adopt the Gaussian mixture as the density model,
and present an algorithm for propagating mixture param-
eters through an indexing tree. The algorithm is akin to tra-
ditional agglomerative clustering procedures, but proceeds
by clustering Gaussians, instead of points. This leads to
a very efficient procedure for building indexing structures,
since the estimation of the parameters of each node only
requires the manipulation of the parameters of the nodes
immediately below, not the original data. Hence, the pro-
cedure is specially suited for applications where large in-
dexing structures must be updated frequently, as is the case
of image databases. The resulting hierarchical density es-
timates are shown to have interesting properties, the most
salient of which is an intrinsic regularization mechanism
which guarantees that generalization power increases as one
moves up in the hierarchy. In result, hierarchical searches
exhibit consistently better performance than linear searches:
for sparsely populated databases they are significantly more
accurate, for densely populated databases they are signifi-
cantly more efficient.

& ‘ Shaded / Non-shaded
Figure 1: a) Two-level classification problem, with four images (A to D)
from two classes. b) The corresponding hierarchical decision structure.

2 Hierarchical indexing

Given a database with many image classes (one class per
image in the extreme case) and a query image, the role of
the retrieval system is to identify the database class that best
explains the query. Decision theory provides a sound for-
mulation of the problem, making it possible to derive op-
timal decision functions. In particular, when the goal is to
minimize the probability of retrieval error, the problem be-
comes one of classification, for which various solutions are
available. In this context, hierarchical indexing is a problem
of hierarchical classification where classes in the higher lev-
els of the hierarchy contain more images than those in the
levels below. Once a particular classification architecture
is selected, the classification process is straightforward: the
decision rule is first applied at the top level, the best class
selected, the decision rule is re-applied to its children and
so on. This is illustrated by Figure 1 a) where we depict an
hypothetical two-level hierarchical classification problem.

In the figure, the densities of four images (A to D) are
represented by circles and ellipses. The images are grouped
into two classes, depicted as “shaded” vs “non-shaded”. As
shown in Figure 1 b), the problem can be captured by a
two-level hierarchical decision structure. Notice that while
each circle is linearly separable from the remaining image
classes when viewed in isolation, this property is lost when
one considers the whole shaded class. This illustrates how
the top-level classification problem can be arbitrarily more
complex than the low-level ones. The main goal of hierar-
chical indexing is to devise a hierarchical classification ar-
chitecture with 1) performance equivalent to, or better than,
that of a flat classifier while 2) achieving significant compu-
tational savings.

3. Hierarchical classifiers

Existing hierarchical classification architectures can be
grouped into two major categories; top-down vs. bottom-
up. Top-down architectures start by designing the classifier
at the top level, using all the available data, and then recur-
sively subdivide each of the top classes to create the lower

levels. They include popular techniques such as decision-
trees [1], tree structured quantizers [3], and mixtures of ex-
perts [8], among others. Bottom-up procedures start from a
classifier at the bottom level and recursively re-arrange the
decision boundaries to obtain the classifiers at the higher
levels. The most common example of such techniques is
the combination of agglomerative clustering with a nearest
neighbor classifier [2]. Here, each image is represented as
a point in some high-dimensional space and a set of similar
points are combined to form a class. A representative point
is then selected for the class, e.g. the centroid of its con-
stituents, and the process iterated. For retrieval, the query is
compared to the representative of each class and the closest
one is selected.

Both top-down and bottom-up architectures present
problems for hierarchical indexing. The main limitation
of top-down procedures is that, in the retrieval context,
classes are rarely defined at the outset. In fact, both
the database and the classes themselves are continuously
changing, through the addition of either new images or new
grouping information (e.g. keywords). It is therefore cru-
cial to rely on architectures that can be regularly updated
without an overwhelming amount of computation. Since,
for top-down architectures, the design of the classifiers that
compose each level of the tree requires processing a training
set containing all the images in the database, the overall cost
is proportional to the product of the total number of feature
vectors in the database and the tree depth. This is usually
too high to allow frequent updates.

On the other hand, existing bottom-up procedures are
seldom applicable when 1) images are not represented as
points on a vector space or 2) class groupings are not driven
by visual similarity. The latter problem is illustrated by
Figure 1, where the “shaded” and “non-shaded” classes are
contrary to the idea of combining an image with its nearest
neighbors. Since each shaded circle is closer to the non-
shaded ellipses than to the other circle, grouping the two
circles implies that the corresponding images are grouped
with their “most distant neighbors”. While, given these
groupings, one could still use standard agglomerative pro-
cedures to find class representatives, such a strategy would
be unlikely to work well. In the example, this would imply
representing both ellipses and circles by their centroids and
using the mean of these centroids as the class representa-
tive. In result, the two class representatives would end up
in the exact same spot, the least desirable situation from the
classification point of view.

Given the limitations of both top-down and standard
bottom-up solutions, there is a clear need for alternative ar-
chitectures. We next consider an extension of bottom-up
strategies to probability densities.

70

70 g ¢

Image1 Image2 Image3

Figure 2: A two-level mixture hierarchy: one mixture of four Gaussians
at the class level, three mixtures of three Gaussians at the bottom.

4. Gaussian mixture hierarchies

Solving the problem of Figure 1 with Gaussian mixtures is
trivial. Consider, for example, the shaded class. Simply
adding up the Gaussian densities that characterize each of
the images (and scaling by 1/2) is enough to obtain the mix-
ture density for the entire class. The simplicity of this solu-
tion is, however, an artifact of the lack of overlap between
the individual densities in this example. A more realistic sit-
uation is depicted in Figure 2, where we have a mixture of
four Gaussians as the class density and three images, each
with density containing only three Gaussians. In practice
this situation could arise from occlusion, e.g. an object with
four differently textured parts, only three of which are visi-
ble in any given view.

While simply adding up the individual Gaussians would
still lead (after proper re-scaling) to the true class density,
the resulting representation would not be computationally
efficient. In fact, one would end up with a total of 9 Gaus-
sians (some sharing the same parameters) instead of 4, and
there would be no benefit of performing a hierarchical over
a linear search. On the contrary, the cost of the former
would be greater than that of the latter. To obtain 4 Gaus-
sians one needs some sort of clustering procedure. The
main difficulty is that, unlike standard clustering applica-
tions, the goal is to cluster Gaussians, not points.

4.1. Hierarchic modd

In order to address this problem we need to introduce some
notation. We denote by M; the set of mixture parameters
for the density of level [(level I being the parent of [+ 1),
and by P(x|M;) the density itself. The total number of

mixture components at level I, C! is assumed to be known?

Cl
P(x|M;) = Z 7 P(x|2 = e;, My;) (1)

i=1

where e; is the i** element of the canonical basis of Rcl,
z! an indicator vector such that z! = e; if and only if x
is a sample from the i** component, M; ; the parameters
of that component, and 7! = P(z! = e;|M,;). Given a
collection of children densities at level [+ 1, the model for
that level is obtained by summing them and normalizing the
7r§+1 so that they sum to one. E.g., in Figure 2,/ € {0,1}
with C® =4and C* = 9.

Models in two consecutive levels are related by a per-
mutation matrix P such that z/+! = Pz!, and p;; = 1
indicates that it component of M, is is a copy of the j*
component of M;,

P(x|z*! = ei,pij = 1, Mig1;) = P(x|2' = ej, My ;).

)
This condition is sufficient to guarantee the consistency of
the hierarchical representation since, when it holds,

Pl M) =

Cl+1

=) mTP(x|Z = e, Miga)
=1
o+t c!

= Z mt! Z:P(X|Z“rl =e,pi; =1, Mi1:)
=1 j=1
P(pi,j = 1|ZH_1 = ei)
cl o+l

= ZP(X|Zl =ej, My ;) z P(z' = ej|z!"! = ;)T
Jj=1 i=1
Cl

= ZP(x|zl = e]',Ml,j)Tl'j- = P(x|M;),
j=1

i.e. the entire density of the children is propagated to the
parent. In addition to it, we impose a condition equivalent
to sampling with replacement

P(pi; =1zt = ;) =7} 3

or, equivalently,

P(zl = ej|zl+1 =e;) = 7r§. 4)

1An assumption that always holds for the children densities, but usually
does not for the parent. Determining automatically the number of parent
Gaussians is a topic for future work, but we will later show that the proce-
dure now proposed is very robust with respect to incorrect guesses for this
parameter.

i.e. the probability that M, ; is a replica of M; ; does not
depend on . Since, when it holds,

P(x|z"t = e;, M) =

Ol

= Y Pz =eipij=1,M)
=1
P(p;; =1z = e))
Ol

= Zﬂ'éP(x|zl+1 =e;, 7' =ej, M))
j=1
Cl

= Y #P(x|z' = ej;, My ;) = P(x| M)

=1

this condition guarantees that the density at level [is not
affected by reordering the components at level I + 1. Such
reordering only affects the permutation matrix P.

4.2. Propagating parameters

Given the parameters of the mixture model at the bottom
of the tree and the number of mixture components in the
remaining levels, the goal is to infer the parameters of the
mixtures at all those levels. Consider levels + 1 and [and
assume that M, is known. It is therefore possible to draw
a sample of independent observations from P(x| M)
consisting of a sequence of pairs {(%,,,z51) 1Y | . These
can be grouped into the sequence {(fc,-,e,-)}f:lf, where
%; = {Xm|ZT! = e;}. We next evaluate the likelihood of

the sample X = {Xy,...,%Xct+1} under the model of level
l' Cl+1
P&EIM) =] PilMy). (5)

i=1
From (1), this is a problem of estimating the parameters of
a mixture, that can be solved by expectation-maximization
(EM). In the E-step we compute the assignment of the x; to
the P(%| M, ;),
hij = P(z' =ejl%i, 2"t =e;, M)
P(x;|zt = ej,Ml)ﬂ'é
Yo P(kilz! = e, M7}

The key quantity to compute is therefore P(x;|z! =
e;, M;). Taking its logarithm

log P(%;|z' = ej, M) = (6)

M;
1 .
Mily7 Yl PRl = e, M)

= M;Epm,, [log P(x|z! = e;, Myp)], @)

where we have used the law of large numbers, M; is the
cardinality of %;, M; = [#t'N], and En,,, ,[x] the

expected value of x according the i** mixture component
of Myy1 (the one from which the observations in x; are
drawn). It can be shown [16] that for Gaussian components,
My,; = {p}, =5}, it leads to

M;
[g(ui“,%23)6*%”“6{(2;)_125“}] m

hij = 1111 M;)
Zk [g(l+1>ﬂk,2l) ytrace{(3) =13 }] 71'§c
®)
where G(x, u,) is a Gaussian with mean p and covariance
3. The M-step consists of maximizing
o+t ot
Q= hijlog(r}P(%;|z' = e;, M1)) (9)
i=1 j=1

subject to the constraint 3 7wk = 1. In the Gaussian case it
leads to the following parameter updates [16]

his
77;' _ %;le (10)
I _ Z“’ L+1 \where w; ; = M (11)
By = - 4,5 M by Zz hijﬂ'l.—’_l
D= 3w (B -)l -) T02)

Note that neither (8) nor (10) to (12) depend explicitly on
the underlying sample %; and can be computed directly
from the parameters of M, ;. The algorithm is thus very
efficient from a computational standpoint.

5. Similarity function

One important issue for hierarchical retrieval is the choice
of similarity function, which should be able to account for
partial matches. Given a query image, it is unlikely that it
will exhibit all the variation found in the classes of which
it is a member. Hence metrics that integrate some function
of the pointwise distance between two densities over their
entire support, e.g. correlation or L? norms, are doomed to
be unsuccessful.

A better alternative is to evaluate the likelihood of the
query image under the database density. For a set F =
{£:} M, of query features and a collection of database den-

sities {P;(x)}L, the retrieval criteria becomes maximum
likelihood (ML)
i* = arg mzax;log P;(fy). (13)

Under ML a good match can be achieved even when the
features f;, populate only a fraction of the region of support
of P;(x). There is, however one problem: the linear cost
of ML on the cardinality M of the query. Computation-
ally more efficient similarity functions can be derived from

the fact that, for large M, ML is equivalent to minimizing
Kullback-Leibler divergence (KLD)

i* =argmin KL(P,(0|IP:(), (14)

where P, (x) is the density of the query and K L(p||q) =
S p(x log[p x)/q(x)]dx the KLD between densities p
and ¢g. The main difficulty is that the KLD has no
closed form expression when p and ¢ are mixtures. One
way to circumvent the problem is to use approxima-
tions. We rely on the asymptotic likelihood approximation
(ALA) [15]. For a query mixture P(x|M,) with M, =
{wq,j,uq,j,zq,j}f:ql and a database mixture P;(x|M;)
with M; = {7 5, 1i j, Ei,j}jcill

ALA(PHPZ) ~ qu,j {logwi@(j)-}-

J

1
[log g(/”q,j y i aj) » 2:i,oz(j)) 2trace[21 a(])]] })
where

a(j) =k = g,y — pikll* < llug; — piall?, VI # k.
The ALA is equivalent to the KLD when all the covariances
are zero, i.e. when the density models are vector quantizers.
In the generic Gaussian mixture case, it has been shown to
provide a good approximation to the KLD when the features

are high-dimensional [15].

6 Experimental evaluation

To evaluate the efficiency of hierarchical indexing we con-
ducted experiments with two databases: the Columbia ob-
ject database and the Corel database of stock photography.
Columbia is a set of images of 100 objects each shot in
72 different views obtained by rotating the object in 3D
in steps of 5°. For computational simplicity, we only con-
sidered a subset of 9 views per object (separated by 40°).
This subset was split into two subgroups, a query database
containing the first image of each object and a retrieval
database containing the remaining 8. In the case of Corel,
we selected 15 image classes? with 100 images each. Once
again we created a query and retrieval database, this time
by assigning each image to the query set with a probability
0.2.

2“Arabian horses,” “auto racing,” “coasts,” “divers and diving,” “En
glish country gardens,” “fireworks,” “glaciers and mountains,” “Mayan and
Aztec ruins,” “oil paintings,” “owls,” “land of the pyramids,” “roses,” “ski
scenes,” “religious stained glass.”

6.1 Imagerepresentation

All experiments were based on the following set-up. First,
all images were converted from the RGB to the YBR color
space [10]. We then extracted a collection of 8 x 8 blocks
from each image (with half-block of overlap in each dimen-
sion between neighboring blocks) and computed the dis-
crete cosine transform [10] of each block. Coefficients from
the spatially co-located blocks of the three color channels
were then interleaved according to the pattern YBRYBR...,
leading to a 192 dimensional vector, of which only the 64
lower frequency coefficients were retained. A Gaussian
mixture was fitted, by EM, to the sample extracted from
each image. To avoid overfitting, we relied on a fixed num-
ber (8) of Gaussians which were constrained to have diago-
nal covariance. While some of these choices may seem ar-
bitrary, most have a theoretical justification and were found
to perform well in practice. See [14] for details.

6.2 Experimental set up

We compared three retrieval strategies: linear search (LS),
hierarchical search with the Gaussian mixture hierarchy
learned with the algorithm of section 4.2 (HGM), and hi-
erarchical search with all models learned directly from data
(HData). A two-level hierarchy, determined by the proper-
ties of the database under study, was used for both HGM
and HData. For each class, the top-level density was ob-
tained by pooling all the individual image densities in that
class. Hence, for HGM, learning each model of level 0 had
complexity O(KC°C*), where K is the average number
of images per class and C* the number of mixture compo-
nents at level <. On the other hand, HData had complexity
O(KC°M) where M is the number of features per image.
Since M >> C' the time required to learn a model under
HData was significantly higher than that required by HGM.
On Columbia, classes consisted of multiple views of the
same object, leading to 100 Gaussian mixtures in the top
level, each having 8 children models. On Corel, all images
from each of the 15 classes enumerated above were grouped
together, leading to 15 top-level models each having, on av-
erage, 80 children. No images from the query database were
used for the construction of the hierarchical models.

6.3. Computational cost

The dramatic reduction in learning complexity of HGM
over HData is visible in the top plot of Figure 3, where we
show learning times as a function of C° for Columbia®. On
this database, the learning cost of HGM was about 40 times
smaller than that of HData, e.g. 21.1 seconds per model for
the former vs. 14.2 minutes for the latter, when C° = 64.

3Because HData is so expensive we could not even use it with the larger
Corel database.

Figure 3: Computational complexity as a function of C°. Top: Learning
times for HGM and HData. Bottom: Ratio of hierarchical/linear search
time for Columbia and Corel.

Because, like HData, most of the top-down procedures dis-
cussed in section 3 require processing the original data to
build the classifiers of each intermediate level, these results
provide a powerful illustration of the advantages of bottom-
up strategies.

The computational advantages of hierarchical over linear
search are illustrated in the bottom plot of the figure, where
we present the ratio hierarchical/linear query time as a func-
tion of C° for both databases. Clearly, the gains can be
substantial (e.g. between one and two orders of magnitude
when there are 8 components in the top-level mixtures) and
are determined by the structure of the database. Columbia
has sparsely populated classes (8 images per class) and,
therefore has a smaller ratio between the number of mixture
models in the two levels (1 at the top per 8 at the bottom,
against 1 per 80 on Corel). Densely populated classes, such
as those of Corel, have the largest potential for computa-
tional savings provided that it is possible to reduce C° to
the minimum possible. This emphasizes the importance of
hierarchical clustering.

6.4. Retrieval accuracy

The results observed so far are not surprising, mostly con-
firming that hierarchical searches are more efficient and
HGM has smaller learning times than HData. A more in-
teresting question is, how much loss in retrieval accuracy is
associated with going from a linear to a hierarchical search
and from a hierarchical search using HData to one using

o B 16 2 32 a0 8 56 64
Number of mixture components

Figure 4: Recognition rate as a function of C°. Top: Columbia. Bottom:
Corel. In both cases the rate achieved with LS is shown as an horizontal
dashed line.

HGM? Intuitively, losses seem inevitable: how could 1)
learning densities hierarchically beat learning them directly
from the data? and 2) a search among class models beat
an exhaustive search among all image models? Contrary
to this intuition, the results in Figure 4 show that, given
enough mixture components to achieve reasonable density
estimates, the retrieval performance of HGM is indeed su-
perior to that of HData and equal or superior to that of LS.

In fact, the results on Columbia show that the improve-
ments can be quite significant: while 1) LS only achieves
92% accuracy, and 2) HData achieves 95% but can also
perform very poorly, HGM achieves 99% and shows great
robustness to variations in the number of mixture compo-
nents at the top level. On Corel, LS and HGM have similar
accuracy. These results indicate that, in terms of retrieval
accuracy, HGM will 1) actually beat the other approaches
when classes are sparsely populated, and 2) achieve equiv-
alent performance when they are densely populated.

The ability to better handle sparsely populated classes,
suggests that HGM generalizes much better than the two
other techniques. To understand the advantages over LS we
return to Figure 2. Suppose that one of the images, e.g. im-
age 3, is used as a query while the other two are stored in the
database. Since the query only has 2 Gaussians in common
with each of the database images, there is always one Gaus-
sian that cannot be explained. None of the two database
images is therefore a very good match and the probability
that some image from another class will be considered more

similar to the query is not negligible. On the other hand,
even if learned only from two of the images, the top-level
model will contain all four Gaussians (albeit not correctly
weighted) and will provide a similarity score that is signifi-
cantly harder to beat®.

To understand the gains of HGM over HData we go back
to (9). Notice that the covariance of the Gaussian at level [
is a weighted sum of the covariances and scatter of its chil-
dren densities. This implies that the variances of each par-
ent are lower-bounded by the corresponding children vari-
ances and, therefore, variances can never decrease as one
moves up the hierarchy. This regularization makes esti-
mates higher up in the hierarchy much more robust than
those at the bottom. Since no such regularization is in place
for HData, some of the Gaussians tend to specialize on
small clusters of non-typical points leading to over-fitting.
Notice, in the top plot of Figure 4, how performance quickly
decays after the “optimal” number of components and con-
trast it with that of HGM which is very robust to variations
of CO.

Further evidence that HGM provides good generaliza-
tion is presented in Figure 5, which depicts four queries
at the class level. In each case, the query image is shown
in the top left, and representative images from each of the
top classes are then shown in raster-scan order®. These top
classes tend to be objects that are visually similar to that in
the query.

Overall, the experimental results show that HGM is the
superior method, among the three evaluated, when both
computational efficiency and retrieval accuracy are taken
into account. For sparse databases, HGM provides some
computational savings and significant improvements in re-
trieval accuracy. For dense databases, accuracy is equiv-
alent to that of LS but the computational savings become
very significant.

References

[1] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-
cation and Regression Trees. Chapman & Hall, 1993.

[2] R. Duda and P. Hart. Pattern Classification and Scene Anal-
ysis. John Wiley and Sons, 1973.

[3] A.Gershoand R. Gray. Vector Quantization and Signal Com-
pression. Kluwer Academic Press, 1992.

[4] J. Hafner, H. Sawhney, W. Equitz, M. Flickner, and
W. Niblack. Efficient Color Histogram Indexing for

“4Notice that the performance of LS would not necessarily improve by
using a k-nearest neighbors type of solution, i.e. taking the two image
matches into account through some voting mechanism. The fact is that
both image models fail to explain one third of the query and, therefore, they
can both receive low similarity ranks. We have actually tried combining
similarity scores through various majority voting rules and none worked
better than the simple LS on the two databases considered.

5Class representative were selected for display only, and play no special
role in the retrieval operation itself.

Figure 5: Examples of retrieval from class models.

Quadratic Form Distance Functions. IEEE Trans. on Pat-
tern. Analysis and Machine Intelligence, 17(7):729-736, July
1995.

[5] J.Huang, S. Kumar, M. Mitra, W. Zhu, and R. Zabih. Spatial
Color Indexing and Applications. Int. Journal of Computer
Vision, 35(3):245-268, December 1999.

[6] T.Huang and X. Zhou. Image Retrieval and Relevance Feed-
back: From Heuristic Weight Adjustment to Optimal Learn-
ing Methods. In IEEE Int. Conf. on Image Processing, Thes-
saloniki, Greece, 2001.

[7] G. lyengar and A. Lippman. Clustering Images Using Rel-
ative Entropy for Efficient Retrieval. In International work-
shop on Very Low Bitrate Video Coding, Urbana, Illinois,
1998.

[8] M. Jordan and R. Jacobs. Hierarchical Mixtures of Experts
and the EM Algorithm. Neural Computation, 6:181-214,
1994,

[9] T. Minka and R. Picard. Interactive learning using a “society
of models”. Pattern Recognition, 30:565-582, 1997.

[10] W. Pennebaker and J. Mitchell. JPEG: Still Image Data
Compression Standard. Van Nostrand Reinhold, 1993.

[11] Y. Rubner, C. Tomasi, and L. Guibas. A Metric for Distribu-
tions with Applications to Image Databases. In International
Conference on Computer Vision, Bombay, India, 1998.

[12] J. Smith and S. Chang. VisualSEEk: a fully automated
content-based image query system. In ACM Multimedia,
Boston, Massachussetts, pages 87-98, 1996.

[13] M. Swain and D. Ballard. Color Indexing. International
Journal of Computer Vision, Vol. 7(1):11-32, 1991.

[14] N. Vasconcelos. Bayesian Models for Visual Information Re-
trieval. PhD thesis, Massachusetts Institute of Technology,
2000.

[15] N. Vasconcelos. On the Complexity of Probabilistic Image
Retrieval. In Proc. International Conference on Computer
Vision, Vancouver, Canada, 2001.

[16] N. Vasconcelos and A. Lippman. Learning Mixture Hier-
archies. In Neural Information Processing Systems, Denver,
Colorado, 1998.

[17] A. Vellaikal and C. Kuo. Hierarchical Clustering Techniques
for Image Database Organization and Summarization. In
SPIE Multimedia Storage and Archiving Systems 111, Boston,
1998.

