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Abstract. The recognition accuracy of current discriminant architec-
tures for visual recognition is hampered by the dependence on holis-
tic image representations, where images are represented as vectors in a
high-dimensional space. Such representations lead to complex classifi-
cation problems due to the need to 1) restrict image resolution and 2)
model complex manifolds due to variations in pose, lighting, and other
imaging variables. Localized representations, where images are repre-
sented as bags of low-dimensional vectors, are significantly less affected
by these problems but have traditionally been difficult to combine with
discriminant classifiers such as the support vector machine (SVM). This
limitation has recently been lifted by the introduction of probabilistic
SVM kernels, such as the Kullback-Leibler (KL) kernel. In this work we
investigate the advantages of using this kernel as a means to combine
discriminant recognition with localized representations. We derive a tax-
onomy of kernels based on the combination of the KL-kernel with various
probabilistic representation previously proposed in the recognition liter-
ature. Experimental evaluation shows that these kernels can significantly
outperform traditional SVM solutions for recognition.

1 Introduction

The formulation of visual recognition as a problem of statistical classification has
led to various solutions of unprecedented success in areas such as face detection,
face, texture, object, and shape recognition, or image retrieval. There are, how-
ever, various fundamental questions in the design of classifiers for recognition
that remain largely unanswered. One of the most significant is that of identify-
ing the most suitable classification architecture. Broadly speaking, there are two
major architecture classes: that of discriminant classifiers and that of classifiers
based on generative models. On one hand, modern learning theory favors the
use of discriminant solutions, namely the large-margin classifiers inspired by VC



theory [5], for which there is an appealing guiding principle (“do not model more
than what is needed”) and a more rigorous understanding of properties such as
the generalization error than what is available for generative solutions. On the
other hand, generative models have various properties of great appeal for the
implementation of recognition systems. In particular they 1) have much better
scalability in the number of classes and amount of data per class, 2) enable the
encoding of knowledge about the classification problem in the choice of statistical
models and, therefore, are significantly more flexible, and 3) allow modular solu-
tions, where Bayesian inference is used to integrate the contributions of various
modules into the optimal decision for a large classification problem.

For visual recognition, one of the fundamental differences between the two
approaches is the set of constraints that are imposed on image representation.
While generative models favor a representation of the image as a large collection
of relatively low-dimensional features, discriminant solutions work best when
images are represented as points in some high-dimensional space. Hence, while a
localized image representation is usually adopted in the generative setting (e.g.
by representing each image as a bag of 8 x 8 image blocks), on the discriminant
setting the representation frequently consists of a holistic low-resolution replica,
e.g. 20 x 20 pixels, of the original image. While this holistic representation has
the clear advantage of capturing global attributes of the objects of interest, e.g.
that eyes, nose, and mouth always appear in a given configuration in face images,
it has various disadvantages over the localized representation. These include 1) a
much higher susceptibility to invariance problems due to either image transfor-
mations, non-rigid objects, or occlusion and 2) a significant loss of information
due to the need to downsample images severely in order to keep the dimen-
sionality of the space tractable. Due to these problems, localized representations
are frequently advocated or adopted for recognition tasks, leading to generative
classifiers [4,6]. While there is a sense that such classifiers imply some loss in
recognition accuracy, the difficulty of combining discriminant techniques with
the localized representation makes the discriminant alternative impractical.

In this work we consider one of the most popular discriminant architectures,
the support vector machine (SVM). SVMs are large-margin classifiers obtained
by solving a convex programming problem that depends on the training data
through a kernel matrix that captures the distances between all pairs of exam-
ples. For a training set of size N, this results in a O(N?) complexity for any
SVM learning algorithm, rendering localized representations (where each image
can lead to a bag of thousands of examples) intractable. It has, however, been
recently observed [7] that a natural extension of this formulation is to consider
kernel matrices that capture distances between the generative models associated
with each bag of examples instead of the examples themselves. This observation
has motivated the introduction of various kernels based on probabilistic models,
e.g. the Fisher [7], Kullback-Leibler [8], TOP [11], and Battacharya [12] kernels.
In this paper, we investigate the benefits of the Kullback-Leibler (KL) kernel for
visual recognition. In particular, we show that it subsumes many kernels based
on localized representations that have been argued to be interesting, or shown



to work well, for recognition. We provide closed-form expressions for the kernel
as a function of the parameters of the probabilistic models whenever they exist,
and discuss alternatives for the construction of the kernel matrix when this is
not the case. Finally, a detailed experimental evaluation is presented, illustrating
the result of the various trade-offs associated with the various combinations of
localized vs holistic representations and generative vs discriminant classifiers.

2 SVMs and kernel functions

In this section, we present a brief review of the SVM architecture and the con-
straints that it poses on image representation for recognition.

2.1 The SVM architecture

Consider a binary classification problem with a training set consisting of (in-
put,output) pairs (x;,y;) € X xY,Y = {—1,1}. Assuming that the data is
separable!, the optimal (in the maximum margin sense) linear separating hy-
perplane w - x+b = 0 is the solution to the constrained optimization problem [5]

1
max E ai— 5 E a;05y:yi (xi-x5)  subject to E ay; =0, a; >0 (1)
i i,j i

where {a;} is a set of Lagrange multipliers, and

W= Zaiyixi b=1/|I Z[yz - Zyjaj(xi'xj)] (2)
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with I = {ilaz; > 0}. One of the appealing properties of this formulation is
that it depends only on the dot products of the training vectors. This allows the
automatic extension of the optimal solution to the, seemingly much more compli-
cated, problem of designing large-margin classifiers with non-planar boundaries.

This extension consists of introducing a non-linear mapping ® : X — Z
from the original input space X to a new feature space Z. Typically X = R*
and Z = R? where p is significantly larger than d and linear boundaries in Z are
equivalent to non-linear boundaries in X. It follows from the discussion above
that the optimal solution in Z is given by (1),(2) with the inner products (x;-x;)
replaced by ®(x;)-®(x;). In X, this is equivalent to simply introducing a kernel
function K(x;,%;), under the constraint that this function must be an inner
product in some space Z, i.e.

A(Z,®),®: X - Z such that K(x;,%x;) = ®(x;)-(x;). (3)

Mercer’s theorem assures that this condition holds whenever K(x,y) is a positive
definite form [5]. Notice that an inner product is nothing but a measure of vector

L All the results in this paper apply equally well to the extension to the non-separable
case [5]. We omit it here for simplicity.



similarity and, since ||[x — y||*> = (x-x) — 2(x-y) + (y - ¥), the standard dot
product implies an Euclidean metric on X'. Under this interpretation, the role of
the kernel is to enable extensions to non-Euclidean measures of similarity. Hence,
the kernel matriz K(x;-x;) can be seen as capturing the similarity between points
X;, X; under the similarity measure that is most suited for the problem at hand.

2.2 Constraints on image representation

Consider a binary recognition problem? with a training set consisting of I exam-
ple images per class. The formulation of this problem as one of statistical clas-
sification can be based on two alternative image representations. The first, the
holistic representation, makes X" the space of all images and represents each im-
age as a point in this space. Since images are high-dimensional, downsampling is
always required to guarantee a space of manageable dimensionality. Typical im-
age sizes after downsampling are on the order of 20 x 20 pixels, i.e. dim(X) =~ 400.
On the other hand, localized representations are based on a collection of local
measurements (or features) extracted from the image. For example, the image
can be broken down into a collection (bag) of small neighborhoods, e.g. 8 x 8
pixels, and X made the space of such neighborhoods, dim(X) = 64. Each image
no longer corresponds to a single point in X', but to a collection of points.

While the dependence on the training examples only through their inner
products is, theoretically, a very appealing feature of the SVM architecture, it
also introduces a significant computational burden that places serious constraints
on the image representations compatible with it. In particular, because SVM
learning is an optimization problem with coefficients given by the entries of the
kernel matrix, its complexity is quadratic in the size of the training set. Hence, if
the localized representation originates K neighborhoods per image, this implies
a O(K?2I?) complexity and a K?2-fold increase over the complexity associated
with the holistic representation. As we will see in section 4, it is not difficult for
the localized representation to originate on the order of 5,000 neighborhoods per
image, corresponding to a 25 x 10%-fold increase in computation that is always
undesirable and usually intractable. Furthermore, under the SVM formulation,
there is no way to capture the natural grouping of image neighborhoods into
images, i.e. the fact that the goal is to classify bags of examples instead of the
examples independently. For these reasons, the localized representation is not
suitable for traditional SVM-based recognition.

While the holistic representation has been successful for recognition [13, 3, 14]
it should not be taken for granted that it is inherently better than its localized
counterpart. On the contrary, it suffers from the following problems.

— Resolution: when images are severely downsampled a significant amount
of information is lost. While this information may not be important for the
classification of images far away from the classification boundary, it can be

2 The discussion in this section generalizes to any number C of classes, since a C-way
classifier can be implemented as a combination of C binary (one-vs-all) classifiers.



quite relevant to distinguish the ones that are close to it. Since the lat-
ter determine the classification error, low resolution can have an impact on
recognition error. The best example of this phenomena are current state-of-
the-art face detectors [13,1]. While visual inspection of the errors committed
by the classifier, at the low-resolution on which its decisions are based, reveals
that it is quite hard to distinguish between faces and non-faces, a significant
percentage of those errors becomes clear at full image resolution.

— Invariance: when images are represented as points in X, a relatively sim-
ple image transformation can send the point associated with an image to
another point that is significantly far away in the Euclidean sense. In fact,
when subject to transformations, images span manifolds in X which can be
quite convoluted and the correct distance for classification is the distance to
these manifold. While the kernel function can, in principle, encode this, the
traditional SVM formulation provides no hints on how to learn the kernel
from examples. This can lead to significant invariance problems.

— Occlusion: since, for the holistic representation, occlusion originates a (pos-
sibly dramatic) change in some of the components of vector associated with
the image to classify, an occluded pattern can, once again, be quite distant
from the unoccluded counterpart. Unlike invariance, it is not even clear that
occlusion leads to an image manifold (there could be creases, folds, or sin-
gularities in the space of occluded images) and it is therefore even less clear
what metric, or kernel, would be appropriate to deal with occlusion.

Note that the localized representation does not place constraints on resolution
(larger images simply generate more neighborhoods), and is significantly more
invariant and robust to occlusion.

3 Probabilistic Kernels based on the KL-divergence

Since there are advantages to the localized representation, enabling the SVM
architecture to support it is a relevant problem for visual recognition. This is the
motivation behind the KL-kernel that we briefly review in this section. We then
show that it 1) enables truly discriminant localized representations, and 2) can
be naturally adapted to each classification problem. This allows the derivation of
various kernels tailored for representations previously proposed for recognition.

3.1 The KL-kernel

The combination of SVMs and localized visual representations is related to that
of SVMs and data sequences, a topic that has been addressed by various au-
thors [7,11,8,12,15]. Since the role of the kernel is to capture similarities between
examples, and sequences are naturally described by their probability densities,
one idea that has recently received some attention is to replace the sequences by
their probabilistic descriptions [7,11,8,12]. This has various advantages, includ-
ing the ability to 1) deal with sequences of variable lengths, 2) rely on a compact



sequence representation, and 3) exploit prior knowledge about the classification
problem (through the selection of probability models) [7]. The KL-kernel is the
extension of the standard Gaussian kernel to this family of probabilistic kernels:
while the Gaussian is proportional to the negative exponent of the weighted Eu-
clidean distance between two vectors, the KL-kernel is the negative exponent
of the symmetric KL divergence [16]. This divergence is a measure of distance
between two densities and has various interesting connections to the geometry of
the manifold of probability distributions [17]. In particular, given densities p(x)
and ¢(x), the KL-kernel is

KLK = exp*aj[p(x),q(x)]-}-b, (4)

where J(p(x), q(x)) = KL(p(x),q(x)) + KL(gq(x),p(x)) is the symmetric KL
divergence between p(x) and ¢(x),

KL, 06) = | "~ plx) log flﬁdx (5)
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the KL divergence between the two densities, and a and b constants [8].

3.2 A kernel taxonomy

One of the main attractives of probabilistic kernels is a significant enhancement
of the flexibility of the SVM architecture. For example, the KL-kernel can be
tailored to a classification problem by either 1) matching it to the statistics of
the datasets under consideration, 2) taking advantage of approximations to the
KL-divergence that have been shown to work well in certain domains, or even
3) combining feature and kernel design. In this section we give some examples
of such tuning, but various other kernels could be derived in a similar fashion.

Parametric densities There are many problems where the class-conditional
densities are known, or can be well-approximated, by parametric densities. In
these cases (5) can usually be simplified. One common setting is for the densities
to be members of a parametric family, such as the popular exponential family

p(x|0) = a(x) exp [a(0) + b()c(x)] , (6)

which includes densities such as Gaussian, Poisson, Binomial, Beta, among var-
ious others [18]. The KL-divergence between two such densities is

K L(p(x(0:), p(x[6;)) = a(6:) — a(8;) + [b(6:) = b(8;)]" By, le(x)]  (7)
where Fy, is the expectation with respect to p(x|6;). One case of significant
interest is that of the Gaussian density,

plxl{1 2}) = G, . 5) eap(~5(x— )8 (x - W} (9)
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for which (7) becomes
KL(G(x, pi, i), Q(X 1, 55)) = 9)

¥ d _
= SO (= )T s~ )

where d is the dimensionality of the x. Since image data is not always well-
approximated by densities in the exponential family, other probabilistic models
are also used in the recognition literature. One popular model is the histogram,
m = {m,...,m}, where m; are estimates for the distribution of the feature
probability mass over a partition of the feature space X defined by a collection
of non-overlapping cells, or bins, C = {C1,...,Cp}. The KL-divergence between

two histograms, 7° = {z%,..., 7t} and 7/ = {x],..., 7]}, defined on C is
b -
L(rt,7?) Zﬂ' —k (10)
k=1

and extensions to the case where the two histograms are defined on different
partitions, C; and C;, are also available [9]. There are, nevertheless, models for
which a closed-form solution to the KL-divergence does not exist. In these cases
it is necessary to resort to approximations or sampling methods.

Approximations and sampling One popular approximation to the KL-divergence
consists of linearizing the log around z = 1, i.e. log(z) ~ x — 1. It is straightfor-
ward to show [10] that, under this approximation, the KL-divergence becomes
the x? statistic, a function that has been frequently proposed as a measure of
histogram similarity [19]. For other models, the x? approximation can still be
quite difficult to compute in closed form. One such case is the popular Gaussian
mixture and various approximations to the KL-divergence between Gaussian
mixtures have been recently proposed in the literature, including 1) the log-sum
bound [20], 2) the asymptotic likelihood approximation [9], and 3) approxima-
tions based on the unscented transformation [21]. Our experience is that, while
these approximations tend to work rather well for ranking images by similarity,
they do not always provide an approximation that is sufficiently tight for the
purpose of evaluating the KL-kernel. An alternative that, at the cost of increase
computation, eliminates this problem is a Monte-Carlo approximation

p(xXm|0:)
K Lp(x|6:), p(x/6;)] Z log e lf) (11)
where x1,...,X; is a sample drawn according to p(x|6;).

4 Experiments and Results

We conducted a detailed experimental evaluation of the performance of the KL-
kernel for recognition. The Columbia object database, COIL-100 [2], was the



source of data for these experiments. It consists of 100 classes, each containing
72 views of an object, obtained by rotating the object at 5° clockwise over 360°.
All images have resolution of 128 x128 pixels and 24-bit RGB color.

4.1 Holistic vs localized representation

To evaluate the impact of image resolution on the performance of the various
classifiers, we created replicas of COIL-100 at three resolutions: 32 x 32, 64 x 64,
and 128 x 128 pixels by downsampling and converting all images to grayscale.
To test invariance, we created from each database 4 different combinations of
train/test sets, following [3]: for each image class, I images were set aside as a
training set, by sampling the view angle uniformly, the remaining ones being used
for testing. As in [3], we considered I € {4,8,18,36}. We refer to the the dataset
with I = n as D,,. In all experiments, the holistic representation was obtained
by scan-converting each image into a vector. For the localized representation
the image was transformed into a bag of 8 x 8 neighborhoods (obtained by
shifting a 8 x 8 window by increments of two pixels horizontally and vertically).
The discrete cosine transform (DCT) of each window was then computed and
scanned into a vector of 64 features ordered by frequency of the associated DCT
basis function. Only the 32 lowest frequency DCT coefficients were kept. This
is a standard procedure that enables speeding-up the estimation of the density
associated with each image without compromising classification performance.

Results The performance of the holistic representation was evaluated with tra-
ditional SVMs based on three different kernels: linear (L-SVM), polynomial of
order 2 (P2-SVM), and Gaussian (G-SVM) [5]. The localized representation was
evaluated with both a standard maximum-likelihood Gaussian mixture model
(GMM) classifier and the KL-kernel using GMMs as probability models (KL-
SVM). We used mixtures of 32 Gaussians in the former case and of 16 in the
latter. Classification rates for all resolutions and datasets D,, are shown in Ta-
ble 1. The best result for each combination of resolution/number of training
images is shown in bold. These results support various interesting conclusions.
First, among the holistic kernels, G-SVM was consistently the best. Its perfor-
mance is excellent when the number of training vectors is large, I = 36, achieving
the best results of all classifiers tested. However, as the number of training ex-
amples decreases, the recognition rate drops significantly. In fact, for values of T
other than 36, it is usually even inferior to that of the non-discriminant GMM
classifier. While this may appear surprising, it underlines one of the points of
section 2.2: that the localized representation is inherently more invariant than
the holistic one, therefore leading to simpler classification problems. Due to this,
the weaker classifier (GMM) outperforms the stronger one (SVM) when there
are less views of each object in the training set and, therefore, the ability to
generalize becomes more important. On the other hand, as expected, the com-
bination of the localized representation with a discriminant classifier (KL-kernel
SVM) outperforms that of the localized representation with a generative classi-
fier (GMM). Overall, the KL-kernel SVM achieves the best performance of all



methods by combining the higher invariance of the localized representation with
the better classification performance of discriminant methods.

Table 1. Recognition rate (in %) for the various classifiers discussed in the text.

Resolution 32 x 32 Resolution 64 x 64 Resolution 128 x 128

Dy | Dg | Dig | D3g || Da | Dg | D1ig | D3s || Da | Dg | Dis | D3s
L-SVM |/67.24|82.67 |92.98 97.31|/67.54 | 82.84 |92.85|97.39 || 67.85 | 82.80 | 92.89 | 97.50
P2-SVM |[63.02|80.03 |93.09[98.11|[62.27|79.11 |92.30 |97.89 || 62.53 | 77.78 | 92.85 | 97.58
G-SVM || 72.79|88.67 | 96.85 (99.78|| 75.75 | 90.80 | 97.78 |99.68|| 75.54 | 90.13 | 97.04 |99.17
GMM 76.41 91.05|96.30|97.83|[ 80.82|90.27 | 94.89 [ 95.31 || 82.48 | 90.89 | 94.72 | 94.89
KL-SVM|[79.56(|93.20({97.32|98.28 |(83.69|94.36(98.89|98.83 ||84.32(|95.22(98.65| 98.67

Regarding the impact of resolution on classification rate, the tables also sup-
port some interesting observations. The first is that the performance of G-SVM
is approximately constant across resolutions. This is remarkable since, for the
holistic representation, 128 x 128 corresponds to a 16,384 dimensional feature
space. The fact is that, as resolution increases, the classification performance
is subject to a tug-of-war between the nefast consequences of the curse of di-
mensionality and the benefits of added image information. For the holistic SVM
these effects cancel out and performance is approximately constant. The local-
ized representation, on the other hand, does not suffer from any increase in the
dimensionality (only more vectors per image) and only has to benefit. Hence,
the gain in recognition rate of KL-SVM over G-SVM increases with image res-
olution. For the hardest problems considered (I = 4) the decrease in error rate
was as large as 36%. Once again, this underlines the points of section 2.2.

4.2 The flexibility of the KL-kernel

Given that the most discriminant visual attributes for recognition depend on
the recognition task (e.g. while shape might achieve the best results for digit
recognition, texture is a better cue for discriminating outdoor scenes) a general-
purpose classifier should support multiple image representations. As discussed
in section 3.2, the flexibility of the KL-kernel makes it very attractive from this
point of view. In this section, we evaluate the performance on COIL-100 of its
combination with previously proposed representations for recognition, in partic-
ular, representations based on color, appearance, and joint color and appearance.
Color-histograms were initially proposed for recognition in [22] and are today
commonly used for object recognition and image retrieval [19]. Histogram sim-
ilarity is frequently measured with the histogram intersection metric, which is
equivalent to the L, distance between the histograms [22]. In the SVM context,
this metric has been proposed as a kernel for visual recognition by [23], and
denoted by Laplacian kernel. We compared its performance with that of the 2
approximation to the KL-divergence, a popular approximation for histogram-
based recognition. For modeling local appearance we used the representation of
the previous section (DCT coefficients of the luminance channel for appearance



alone, DCT coefficients of the three color channels for joint color and appear-
ance). For global appearance we used the holistic representation. To jointly model
color and global appearance we concatenated the vectors from the three color
channels into a vector three times larger.

Results All experiments were based on 128 x 128 images and dataset D,. Color
histograms were computed with 16 x 16 x 16 bins, gray-level histograms with 16
bins. For joint color and local appearance, the DCT coefficients were interleaved
into a 192 dimensional vector of which only the first 64 dimensions were used
for density estimation. Table 2 presents a comparison of the recognition rates.
The first interesting observation from this table is the importance of color as
a cue for recognition on COIL, since all representations perform significantly
better when color is used. Interestingly, in this case, the extremely localized his-
togram representation (features of pixel support) beats the less-localized (8 x 8
supported) appearance-based counterpart and both significantly outperform the
holistic representation. This illustrates the trade-off between localization and
invariance at an extreme level: because color is so discriminant, even the invari-
ance loss associated with the small 8 x 8 neighborhood is sufficient to degrade
recognition performance. The invariance loss of the holistic representation is so
large that its performance is not even close to those of the localized representa-
tions. Note that the point is not to claim that the color histogram is the ultimate
solution for object recognition. In fact, it would likely not perform as well if, for
example, there were more objects with similar colors in the database. The point
is that different visual attributes are most discriminant for different databases,
and less discriminant attributes require representations of larger spatial support
(which allow modeling configurations of features therefore increasing the dis-
criminant power). However, larger support usually implies less invariance (since
the manifolds spanned by the configurations are increasingly more complex) and
the result is a trade-off between discriminant power and invariance. In table 2
the best value for this trade-off is achieved by the localized representation, for
grayscale images, and by the histogram-based one, when color is used. The con-
clusion is that, even for a given classification problem, the optimal representation
can vary depending on factors such as the composition of the database, its size,
the visual features that can be reliably extracted, etc. In this sense, the ability
of the KL-kernel to support a diversity of representations can be a great asset.
A second interesting observation is to compare the results in the table with
those obtained by Roth et al. They used shape as the cue for recognition and
proposed two representations. One based on explicit encoding of the position of
pixels in the object contour, the second based on conjunctions of edges. The first
achieved a rate of 81.46, i.e. superior only to the combination of the KL-kernel
with the grayscale histogram, and the grayscale G-SVM. The second achieved
a rate, 88.28, slightly superior to the grayscale KL.-SVM kernel, and superior to
the two holistic SVM representations, but clearly inferior to any of the KL-SVM
kernels using color. Again, these results highlight the importance of different
representations for different databases. While color does not produce a winner
when combined with holistic appearance, it completely shatters the performance



of shape when combined with any of the localized representations. On the other
hand, shape appears to be more discriminant than appearance in the absence
of color. This suggests that it would be interesting to have a shape-based kernel
for the KL-SVM, an area that we are now exploring.

Table 2. Recognition rate (in %) of classifiers based on different visual cues: color,
appearance, and joint color and appearance.

| | histogram-based  [local appearance|global appearance]

grayscale|[x? kernel: 71.72| KL-SVM: 84.32 | G-SVM: 75.54
Laplacian kernel: 69.90

color x? kernel: 98.12| KL-SVM: 96.74 | G-SVM: 84.90
Laplacian kernel: 97.81
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