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Abstract

In this paper we establish a duality between boosting and SVM, and use this
to derive a novel discriminant dimensionality reduction algorithm. In particular,
using the multiclass formulation of boosting and SVM we note that both use
a combination of mapping and linear classification to maximize the multiclass
margin. In SVM this is implemented using a pre-defined mapping (induced by
the kernel) and optimizing the linear classifiers. In boosting the linear classifiers
are pre-defined and the mapping (predictor) is learned through a combination of
weak learners. We argue that the intermediate mapping, i.e. boosting predictor, is
preserving the discriminant aspects of the data and that by controlling the dimension
of this mapping it is possible to obtain discriminant low dimensional representations
for the data. We use the aforementioned duality and propose a new method, Large
Margin Discriminant Dimensionality Reduction (LADDER) that jointly learns the
mapping and the linear classifiers in an efficient manner. This leads to a data-driven
mapping which can embed data into any number of dimensions. Experimental
results show that this embedding can significantly improve performance on tasks
such as hashing and image/scene classification.

1 Introduction

Boosting and support vector machines (SVM) are widely popular techniques for learning classifiers.
While both methods are maximizing the margin, there are a number of differences that distinguish
them; e.g. while SVM selects a number of examples to assemble the decision boundary, boosting
achieves this by combining a set of weak learners. In this work we propose a new duality between
boosting and SVM which follows from their multiclass formulations. It shows that both methods
seek a linear decision rule by maximizing the margin after transforming input data to an intermediate
space. In particular, kernel-SVM (K-SVM) [39] first selects a transformation (induced by the kernel)
that maps data points into an intermediate space, and then learns a set of linear decision boundaries
that maximize the margin. This is depicted in Figure 1-bottom. In contrast, multiclass boosting
(MCBoost) [34] relies on a set of pre-defined codewords in an intermediate space, and then learns a
mapping to this space such that it maximizes the margin with respect to the boundaries defined by
those codewords. See Figure 1-top. Therefore, both boosting and SVM follow a two-step procedure:
(i) mapping data to some intermediate space, and (ii) determine the boundaries that separate the
classes. There are, however, two notable differences: 1) while K-SVM aims to learn only the
boundaries, MCBoost effort is on learning the mapping and 2) in K-SVM the intermediate space
typically has infinite dimensions, while in MCBoost the space has M or M − 1 dimensions, where
M is the number of classes.
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Figure 1: Duality between multiclass boosting and
SVM.

The intermediate space (called prediction space)
in the exposed duality has some interesting prop-
erties. In particular, the final classifier decision
is based on the representation of data points in
this prediction space where the decision bound-
aries are linear. An accurate classification by
these simple boundaries suggests that the in-
put data points must be very-well separated in
this space. Given that in the case of boosting
this space has limited dimensions, e.g. M or
M − 1, this suggests that we can potentially use
the predictor of MCBoost as a discriminant di-
mensionality reduction operator. However, the
dimension of MCBoost is either M or M − 1
which restricts application of this operator as a
general dimensionality reduction operator. In
addition, according to the proposed duality, each of K-SVM or Boosting optimizes only one of the
two components, i.e. mapping and decision boundaries. Because of this, extra care needs to be put in
manually choosing the right kernel in K-SVM; and in MCBoost, we may not even be able to learn a
good mapping if we preset some bad boundaries.

We can potentially overcome these limitations by combining boosting and SVM to jointly learn both
the mapping and linear classifiers for a prediction space of arbitrary dimension d. We note that this
is not a straightforward merge of the two methods as this can lead to a computationally prohibitive
method; e.g. imagine having to solve the quadratic optimization of K-SVM before each iteration of
boosting. In this paper, we propose a new algorithm, Large-mArgin Discriminant DimEnsionality
Reduction (LADDER), to efficiently implement this hybrid approach using a boosting-like method.
LADDER is able to learn both the mapping and the decision boundaries in a margin maximizing
objective function that is adjustable to any number of dimensions. Experiments show that the resulting
embedding can significantly improve tasks such as hashing and image/scene classification.

Related works: This paper touches several topics such as dimensionality reduction, classification,
embedding and representation learning. Due to space constraints we present only a brief overview
and comparison to previous work.

Dimensionality reduction has been studied extensively. Unsupervised techniques, such as principal
component analysis (PCA), non-negative matrix factorization (NMF), clustering, or deep auto-
encoders, are conceptually simple and easy to implement, but may eliminate discriminant dimensions
of the data and result in sub-optimal representations for classification. Discriminant methods, such as
sequential feature selection techniques [31], neighborhood components analysis [11], large margin
nearest neighbors [42] or maximally collapsing metric learning [37] can require extensive computation
and/or fail to guarantee large margin discriminant data representations.

The idea of jointly optimizing the classifiers and the embedding has been extensively explored in
embedding and classification literature, e.g. [7, 41, 45, 43]. These methods, however, typically
rely on linear data transformation/classifier, requires more complex semi-definite programming [41]
or rely on Error Correcting Output Codes (ECOC) approach [7, 45, 10] which has shown inferior
performance compared to direct multiclass boosting methods [34, 27]. In comparison, we note that
the proposed method (1) is able to learn a very non-linear transformation through boosting predictor,
e.g. boosting deep decision trees; and, (2) relies on direct multiclass boosting that optimizes a margin
enforcing loss function. Another example of jointly learning the classifiers and the embedding is
multiple kernel learning (MKL) literature, e.g. [12, 36]. In these methods, a new kernel is learned as
a linear combination of fixed basis functions. Compared with LADDER, 1) the basis functions are
data-driven and not fixed, and 2) our method is also able to combine weak learners and form novel
basis functions tailored for the current task. Finally, it is also possible to jointly learn the classifiers
and embedding using deep neural networks. This, however, requires large number of training data
and can be computationally very intensive. In addition the proposed LADDER method is a meta
algorithm that can be used to further improve the deep networks, e.g. by boosting of the deep CNNs.
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2 Duality of boosting and SVM

Consider an M -class classification problem, with training set D = {(xi, zi)}ni=1, where zi ∈
{1 . . .M} is the class of example xi. The goal is to learn a real-valued (multidimensional) function
f(x) to predict the class label z of each example x. This is formulated as the predictor f(x) that
minimizes the risk defined in terms of the expected loss L(z, f(x)):

R[f ] = EX,Z{L(z, f(x))} ≈ 1

n

∑
i

L(zi, f(xi)). (1)

Different algorithms vary in their choice of loss functions and numerical optimization procedures. The
learned predictor has large margin if the loss L(z, f(x)) encourages large values of the classification
margin. For binary classification, f(x) ∈ R, z ∈ {1, 2}, the margin is defined as M(xi, zi) =
yif(xi), where yi = y(zi) ∈ {−1, 1} is the codeword of class zi. The classifier is then F (x) =
H(sign[f(x)]) whereH(+1) = 1 andH(−1) = 2.

The extension to M-ary classification requires M codewords. These are defined in a multidimensional
space, i.e. as yk ∈ Rd, k = 1 . . .M where commonly d = M or d = M − 1. The predictor is then
f(x) = [f1(x), f2(x) . . . fd(x)] ∈ Rd, and the margin is defined as

M(xi, zi) =
1

2

[
〈f(xi), y

zi〉 −max
l 6=zi
〈f(xi), y

l〉
]
, (2)

where 〈·, ·〉 is the Euclidean dot product. Finally, the classifier is implemented as

F (x) = arg max
k∈{1,...,M}

〈yk, f(x)〉. (3)

Note that the binary equations are the special cases of (2)-(3) for codewords {−1, 1}.
Mutliclass Boosting: MCBoost [34] is a multiclass boosting method that uses a set of unit vectors
as codewords – forming a regular simplex in RM−1 –, and the exponential loss

L(zi, f(xi)) =

M∑
j=1,j 6=zi

e−
1
2 [〈y

zi ,f(xi)〉−〈yj ,f(xi)〉]. (4)

For M = 2, this reduces to the loss L(zi, f(xi)) = e−y
zif(xi) of AdaBoost [9].

Given a set, G, of weak learners g(x) ∈ G : X → RM−1, MCBoost minimizes (1) by gradient
descent in function space. In each iteration MCBoost computes the directional derivative of the risk
for updating f(x) along the direction of g(x),

δR[f ; g] =
∂R[f + εg]

∂ε

∣∣∣∣
ε=0

= − 1

2n

n∑
i=1

〈g(xi), w(xi)〉, (5)

where w(xi) =
∑M
j=1(yj − yzi)e− 1

2 〈y
zi−yj ,f(xi)〉 ∈ RM−1. The direction of steepest descent and

the optimal step size toward that direction are then

g∗ = arg min
g∈G

δR[f ; g] α∗ = arg min
α∈R

R[f + αg∗]. (6)

The predictor is finally updated with f := f + α∗g∗. This method is summarized in Algorithm 1. As
previously mentioned, it reduces to AdaBoost [9] for M = 2, in which α∗ has closed form.

Mutliclass Kernel SVM (MC-KSVM) : In the support vector machine (SVM) literature, the margin
is defined as

M(xi,wzi) = 〈Φ(xi),wzi〉 −max
l 6=zi
〈Φ(xi),wl〉, (7)

where Φ(x) is a feature transformation, usually defined indirectly through a kernel k(x, x′) =
〈Φ(x),Φ(x′)〉, and wl (l = 1 . . .M ) are a set of discriminative projections. Several algorithms have
been proposed for multiclass SVM learning [39, 44, 17, 5]. The classical formulation by Vapnik finds
the projections that solve: minw1...wM

∑M
l=1 ‖wl‖22 + C

∑
i ξi

s.t. 〈Φ(xi),wzi〉 − 〈Φ(xi),wl〉 ≥ 1− ξi,∀(xi, zi) ∈ D, l 6= zi,
ξi ≥ 0 ∀i.

(8)
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Algorithm 1 MCBoost

Input: n. of classes M , n. of iterations Nb, predictor dimension, d, codewords {y1, . . . , yM} ∈
Rd, and dataset D = {(xi, zi)}ni=1 where zi ∈ {1 . . .M} is label of example xi.
Initialization: set t = 0 and f = 0 ∈ RM−1
for t ∈ {1 . . . Nb} do

find best weak learner g∗(x), α∗ using (6).
update f(x) = f(x) + α∗g∗(x)

end for
Output: F (x) = arg maxk 〈f(x), yk〉

Rewriting the constraints as

ξi ≥ max[0, (1− 〈Φ(xi),wzi〉 −max
l 6=zi
〈Φ(xi),wl〉)],

and using the fact that the objective function is monotonically increasing in ξi, this is identical to
solving the problem

minw1...wM

∑
i b〈Φ(xi),wzi〉 −maxl 6=zi〈Φ(xi),wl〉c+ + λ

∑M
l=1 ‖wl‖22, (9)

where bxc+ = max(0, 1 − x) is the hinge loss, and λ = 1/C. Hence, MC-KSVM minimizes the
risk R[f ] subject to a regularization constraint on

∑
l ‖wl‖22. The predictor of the multiclass kernel

SVM (MC-KSVM) is then defined as

FMC−KSVM (x) = arg max
l=1..M

〈Φ(x),w∗l 〉. (10)

Duality: The discussion of the previous sections unveils an interesting duality between multiclass
boosting and SVM. Since (7) and (10) are special cases of (2) and (3), respectively, the MC-SVM is a
special case of the formulation of Section 2, with predictor f(x) = Φ(x) and codewords yl = wl.
This leads to the duality of Figure 1. Both boosting and SVM implement a classifier with a set of
linear decision boundaries on a prediction space F . This prediction space is the range space of the
predictor f(x). The linear decision boundaries are the planes whose normals are the codewords
yl. For both boosting and SVM, the decision boundaries implement a large margin classifier in F .
However, the learning procedure is different. For the SVM, examples are first mapped into F by a
pre-defined predictor. This is the feature transformation Φ(x) that underlies the SVM kernel. The
codewords (linear classifiers) are then learned so as to maximize the margin. On the other hand, for
boosting, the codewords are pre-defined and the boosting algorithm learns the predictor f(x) that
maximizes the margin. The boosting / SVM duality is summarized in Table 1.

Table 1: Duality between MCBoost and MC-KSVM
predictor codewords

MCBoost learns f(x) fix yi
MC-KSVM fix Φ(x) learns wl

3 Discriminant dimensionality reduction
In this section, we exploit the multiclass boosting / SVM duality to derive a new family of discriminant
dimensionality reduction methods. Many learning problems require dimensionality reduction. This
is usually done by mapping the space of features X to some lower dimensional space Z , and then
learning a classifier on Z . However, the mapping from X to Z is usually quite difficult to learn.
Unsupervised procedures, such as principal component analysis (PCA) or clustering, frequently
eliminate discriminant dimensions of the data that are important for classification. On the other hand,
supervised procedures tend to lead to complex optimization problems and can be quite difficult to
implement. Using the proposed duality we argue that it is possible to use an embedding provided
by boosting or SVM. In case of SVM this embedding is usually infinite dimensional which can
make it impractical for some applications, e.g. hashing problem [20]. In case of boosting the
embedding, f(x), has a finite dimension d. In general, the complexity of learning a predictor f(x)
is inversely proportional to this dimension d, and lower dimensional codewords/predictors require
more sophisticated predictor learning. For example, convolutional networks such as [22] use the
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Algorithm 2 Codeword boosting
Input: dataset D = {(xi, zi)}ni=1 where zi ∈ {1 . . .M}
is label of example xi, M is the n. of classes, a set of
d-dimensional codewords Y , a predictor f(x) : X → Rd,
n. of codeword learning iterations Nc.
Initialization: set t = 0.
for t ∈ {1 . . . Nc} do

compute ∂R
∂Y and find the best step size, β∗ by (12).

update Y = Y − β∗dY
normalize Y to satisfy constraint of (11)

end for
Output: codeword set: Y

SVCL 3 

Figure 2: Codeword updates after a
gradient descent step

canonical basis of RM as codeword set, and a predictor composed of M neural network outputs.
This is a deep predictor, with multiple layers of feature transformation, using a combination of linear
and non-linear operations. Similarly, as discussed in the previous section, MCBoost can be used to
learn predictors of dimension M or M − 1, by combining weak learners. A predictor learned by
any of these methods can be interpreted as a low-dimensional embedding. Compared to the classic
sequential approach of first learning an intermediate low dimensional space Z and then learning
a predictor f : Z → F = RM , these methods learn the classifier directly in a low-dimensional
prediction space, i.e. F = Z . In the case of boosting, this leverages a classifier that explicitly
maximizes the classification margin for the solution of the dimensionality reduction problem.

The main limitation of this approach is that current multiclass boosting methods [34, 27] rely on a
fixed codeword dimension d, e.g. d = M in [27] or d = M − 1 in [34]. In addition these codewords
are pre-defined and are independent of the input data, e.g. vertices of a regular simplex in RM or
RM−1 [34]. In summary, the dimensionality of the predictor and codewords are tied to the number
of classes. Next, we propose a method that extends current boosting algorithms 1) to use embeddings
of arbitrary dimensions and 2) to learn the codewords (linear classifiers) based on the input data.

In principle, the formulation of section 2 is applicable to any codeword set and the challenge is to find
the optimal codewords for a target dimension d. For this, we propose to leverage the duality between
boosting and SVM. First, use boosting to learn the optimal predictor for a given set of codewords,
and second use SVM to learn the optimal codewords for the given predictor. This procedure, has
two limitations. First, although both are large margin methods, boosting and SVM use different loss
functions (exponential vs. hinge). Hence, the procedure is not guaranteed to converge. Second, an
algorithm based on multiple iterations of boosting and SVM learning is computationally intensive.

We avoid these problems by formulating the codeword learning problem in the boosting framework
rather than an SVM formulation. For this, we note that, given a predictor f(x), it is possible to learn
a set of codewords that guarantees large margins, under the exponential loss, by solving{

miny1...yM R[Y, f ] = 1
2n

∑n
i=1 L(Y, zi, f(xi))

s.t. ‖yk‖ = 1 ∀k (11)

where L(Y, zi, f(xi)) =
∑
j 6=zi e

− 1
2 〈y

zi−yj ,f(xi)〉. As is usual in boosting, we propose to solve this
optimization by a gradient descent procedure. Each iteration of the proposed codeword boosting
algorithm computes the risk derivatives with respect to all codewords and forms the matrix ∂R

∂Y =[
∂R[Y,f ]
∂y1 . . . ∂R[Y,f ]

∂yM

]
. The codewords are then updated according to Y = Y − β∗ ∂R∂Y where

β∗ = arg min
β
R

[
Y − β ∂R

∂Y
, f

]
, (12)

is found by a line search. Finally, each codeword yl, is normalized to satisfy the constraint of (11).
This algorithm is summarized in Algorithm 2.

Given this, we are ready to introduce an algorithm that jointly optimizes the codeword set Y and
predictor f . This is implemented using an alternate minimization procedure that iterates between
the following two steps. First, given a codeword set Y , determine the predictor f∗(x) of minimum
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Algorithm 3 LADDER
Input: number of classes M , dataset D = {(xi, zi)}ni=1 where zi ∈ {1 . . .M} is label of example
xi,number of predictor dimension d, number of boosting iteration Nb, number codeword learning
iteration Nc, number of interleaving rounds Nr.
Initialization: set t = 0 and f = 0 ∈ Rd and set initialize yi ∈ Rd
for t ∈ {1 . . . Nr} do

use Nb iteration of MCBoost, Algorithm 1, to update f(x)
use Nc iteration of gradient descent in Algorithm 2 and update Y

end for
Output: f(x), Y and decision rule: F (x) = arg maxk 〈f(x), yk〉

risk R[Y, f ]. This is implemented with MCBoost (Algorithm 1). Second, given the optimal predictor
f∗(x), determine the codeword set Y∗ of minimum risk R[Y∗, f∗]. This is implemented with
codeword boosting (Algorithm 2). Note that, unlike the combined SVM-Boosting solution, the two
steps of this algorithm optimize the common risk of (11). Since this risk encourages predictors
of large margin, the algorithm is denoted Large mArgin Discriminant DimEnsionality Reduction
(LADDER). The procedure is summarized in Algorithm 3.

Analysis: First, note that the sub-problems solved by each step of LADDER, i.e. the minimization of
R[Y, f ] given Y or f, are convex. However, the overall optimization of (11) is not convex. Hence,
the algorithm will converge to a local optimum, which depends on the initialization conditions. We
propose an initialization procedure motivated by the following intuition. If two of the codewords
are very close, e.g. yj ≈ yk, then 〈yj , f(x)〉 is very similar to 〈yk, f(x)〉 and small variations
of x may change the classification results of (3) from k to j and vice-versa. This suggests that
the codewords should be as distant from each other as possible. We thus propose to initialize the
MCBoost codewords with the set of unit vectors of maximum pair-wise distance, e.g.

max
y1...yM

min
j 6=k
||yj − yk|| ,∀j 6= k (13)

For d = M, these codewords can be the canonical basis of RM . We have implemented a barrier
method from [18] to obtain maximum pair-wise distance codeword sets for any d < M .

Second, Algorithm 2 has interesting intuitions. We start by rewriting the risk derivatives as ∂R[Y,f ]
∂yj =

1
2n

∑
i(−1)δijf(xi)Lis

(1−δij)
ij where Li = L(Y, zi, f(xi)), sij = e

1
2
〈yj,f(xi)〉∑

k 6=zi
e
1
2
〈yk,f(xi)〉

, and δij = 1

if zi = j and δij = 0 otherwise. It follows that the update of each codeword along the gradient
ascent direction, −∂R[Y,f ]

∂yj , is a weighted average of the predictions f(xi). Since δij is an indicator
of the examples xi in class j, the term (−1)δij reflects the assignment of examples to the classes.
While each xi in class j contributes to the update of yj with a multiple of the prediction f(xi),
this contribution is −f(xi) for examples in classes other than j. Hence, each example xi in class
j pulls yj towards its current prediction f(xi), while pulling all other codewords in the opposite
direction. This is illustrated in Figure 2. The result is an increase of the dot-product 〈yj , f(xi)〉,
while the dot-products 〈yk, f(xi)〉 ∀k 6= j decrease. Besides encouraging correct classification, these
dot product adjustments maximize the multiclass margin. This effect is modulated by the weight
of the contribution of each point. This weight is the factor Lis

(1−δij)
ij , which has two components.

The first, Li, is the loss of the current predictor f(xi) for example xi. This measures how much
xi contributes to the current risk and is similar to the example weighting mechanism of AdaBoost.
Training examples are weighted, so as to emphasize those poorly classified by the current predictor
f(x). The second, s(1−δij)ij , only affects examples xi that do not belong to class j. For these, the
weight is multiplied by sij . This computes a softmax-like operation among the codeword projections
of f(xi) and is large when the projection along yj is one of the largest, and small otherwise. Hence,
among examples xi from classes other than j that have equivalent loss Li, the learning algorithm
weights more heavily those most likely to be mistakenly assigned to class j. In result, the emphasis
on incorrectly classified examples is modulated by how much class pairs are confused by the current
predictor. Examples from classes that are more confusable with class j receive larger weight for the
update of the latter.
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Figure 3: Left: Initial codewords for all traffic sign classes. Middle: codewords learned by LADDER. Right:
Error rate evaluation with standard MCBoost classifier (CLR) with several dimensionality reduction techniques.

4 Experiments

We start with a traffic sign detection problem that allows some insight on the merits of learning
codewords from data. This experiment was based on∼ 2K instances from 17 different types of traffic
signs in the first set of the Summer traffic sign dataset [25], which was split into training and test set.
Examples of traffic signs are shown in the left of figure 3. We also collected about 1, 000 background
images, to represent non-traffic sign images, leading to a total of 18 classes. The background class is
shown as a black image in figure 3-left and middle. All images were resized to 40× 40 pixels and
the integral channel method of [8] was used to extract 810 features per image.

The first experiment compared the performance of traditional multiclass boosting to LADDER. The
former was implemented by running MCBoost (Algorithm 1) for Nb = 200 iterations, using the
optimal solution of (13) as codeword set. LADDER was implemented with Algorithm 3, using
Nb = 2, Nc = 4, and Nr = 100. In both cases, codewords were initialized with the solution
of (13) and the initial assignment of codewords to classes was random. In each experiment, the
learning algorithm was initialized with 5 different random assignments. Figure 3 compares the initial
codewords (Left) to those learned by LADDER (Middle) for a 2-D embedding (d = 2). A video
showing the evolution of the codewords is available in the supplementary materials. The organization
of the learned codewords reflects the semantics of the various classes. Note, for example, how
LADDER clusters the codewords associated with speed limit signs, which were initially scattered
around the unit circle. On the other hand, all traffic sign codewords are pushed away from that of the
background image class. Within the traffic sign class, round signs are positioned in one half-space
and signs of other shapes on the other. Regarding discriminant power, a decision rule learned by
MCBoost achieved 0.44 ± 0.03 error rate, while LADDER achieved 0.21 ± 0.02. In summary,
codeword adaptation produces a significantly more discriminant prediction space.

This experiment was repeated for d ∈ [2, 27], with the results of Figure 3-right. For small d,
LADDER substantially improves on MCBoost (about half error rate for d ≤ 5). LADDER was
also compared to various classical dimensionality reduction techniques that do not operate on the
prediction space. These included PCA, LDA, Probabilistic PCA [33], Kernel PCA [35], Locally
Preserving Projections (LPP) [16], and Neighborhood Preserving Embedding (NPE) [15]. All
implementations were provided by [1]. For each method, the data was mapped to a lower dimension
d and classified using MCBoost. LADDER outperformed all methods for all dimensions.

Hashing and retrieval: Image retrieval is a classical problem in Vision [3, 4]. Encoding high dimen-
sional feature vectors into short binary codes to enable large scale retrieval has gained momentum in
the last few years [6, 38, 23, 13, 24, 26]. LADDER enables the design of an effective discriminant
hash code for retrieval systems. To obtain a d-bit hash, we learn a predictor f(x) ∈ Rd. Each
predictor coordinate is then thresholded and mapped to {0, 1}. Retrieval is finally based on the
Hamming distance between these hash codes. We compare this hashing method to a number of
popular techniques on CIFAR-10 [21], which contains 60K images of ten classes. Evaluation was
based on the test settings of [26], using 1, 000 randomly selected images. Learning was based on
a random set of 2, 000 images, sampled from the remaining 59K. All images are represented as
512-dimensional GIST feature vectors [28]. The 1, 000 test images were used to query a database
containing the remaining 59K images.
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Table 2: Left: Mean average precision (mAP) for CIFAR-10. Right: Classification accuracy on MIT
indoor scenes dataset.

Method
hash length (bits)

8 10 12

LSH 0.147 0.150 0.150

BRE 0.156 0.156 0.158

ITQunsup. 0.162 0.159 0.164

ITQsup. 0.220 0.225 0.231

MCBoost 0.200 0.250 0.250

KSH 0.237 0.252 0.253

LADDER 0.224 0.270 0.266

Method Accuracy

RBoW [29] 37.9%

SPM-SM [40] 44.0%

HMP [2] 47.6%

conv5+PCA+FV 52.9%

conv5+MC-Boost+FV 52.8%

conv5+LADDER+FV 55.2%

Table 2-Left shows mean average precision (mAP) scores under different code lengths for LSH [6],
BRE [23], ITQ [13], MCBoost [34], KSH [26] and LADDER. Several conclusions can be drawn.
First, using a multiclass boosting technique with predefined equally spaced codewords of (13),
MCBoost, we observe a competitive performance; on par with popular approaches such as ITQ,
however slightly worst than KSH. Second, LADDER improves on MCBoost, with mAP gains that
range from 6 to 12%. This is due to its ability of LADDER to adjust/learn codewords according
to the training data. Finally, LADDER outperformed other popular methods for hash code lengths
≥ 10-bits. These gains are about 5 and 7% as compared to KSH, the second best method.

Scene understanding: In this experiment we show that LADDER can provide more efficient dimen-
sionality reduction than regular methods such as PCA. For this we selected the scene understanding
pipeline of [30, 14] that is consists of deep CNNs [22, 19], PCA, Fisher Vectors(FV), SVM. PCA in
this setting is necessary as the Fisher Vectors can become extremely high dimensional. We replaced
the PCA component by embeddings of MCBoost and LADDER and compared their performance
with PCA and other scene classification methods on the MIT Indoor dataset [32]. This is a dataset of
67 indoor scene categories where the standard train/test split contains 80 images for training and 20
images for testing per class. Table 2-Right summarizes performance of different methods. Again
even with plain MCBoost predictor we observe a competitive performance; on par with PCA. The
performance is then improved by LADDER by learning the embedding and codewords jointly.

5 Conclusions
In this work we present a duality between boosting and SVM. This duality is used to propose a novel
discriminant dimensionality reduction method. We show that both boosting and K-SVM maximize
the margin, using the combination of a non-linear predictor and linear classification. For K-SVM,
the predictor (induced by the kernel) is fixed and the linear classifier is learned. For boosting, the
linear classifier is fixed and the predictor is learned. It follows from this duality that 1) the predictor
learned by boosting is a discriminant mapping, and 2) by iterating between boosting and SVM it
should be possible to design better discriminant mappings. We propose the LADDER algorithm to
efficiently implement the two steps and learn an embedding of arbitrary dimension. Experiments
show that LADDER learns low-dimensional spaces that are more discriminant.
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