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Abstract—Probabilistic approaches are a promising solution to
the image retrieval problem that, when compared to standard re-
trieval methods, can lead to a significant gain in retrieval accu-
racy. However, this occurs at the cost of a significant increase in
computational complexity. In fact, closed-form solutions for prob-
abilistic retrieval are currently available only for simple proba-
bilistic models such as the Gaussian or the histogram. We analyze
the case of mixture densities and exploit the asymptotic equivalence
between likelihood and Kullback-Leibler (KL) divergence to de-
rive solutions for these models. In particular, 1) we show that the di-
vergence can be computed exactly for vector quantizers (VQs) and
2) has an approximate solution for Gauss mixtures (GMs) that, in
high-dimensional feature spaces, introduces no significant degra-
dation of the resulting similarity judgments. In both cases, the new
solutions have closed-form and computational complexity equiva-
lent to that of standard retrieval approaches.

Index Terms—Bayes classifier, Gauss mixture (GM), image
databases, Kullback-Leibler (KL) divergence, maximum
a posteriori probability (MAP) similarity, probabilistic image
retrieval, vector quantizer (VQ).

1. INTRODUCTION

ATABASE theory and the design of the various compo-

nents that constitute a database system have been two
enormously successful areas in computer science. However,
because it is oriented to text-based data structures, existing
database technology cannot fully address the challenges
posed by modern databases that contain, in addition to text,
multiple other signal modalities. Examples include multimedia
databases containing audio, video, and graphics or life-sciences
databases containing medical imagery and DNA information.
While it is theoretically possible to simply annotate all the
database content with text metadata and rely on traditional
database architectures to later retrieve the desired information,
in practice there are many situations in which such solutions
are impossible or not cost effective. There are various reasons
for this, including the enormous amounts of data involved
(which make the annotation cost overwhelming) or the fact
that various interpretations can be given to an image, a piece
of music, or a DNA sample. Some of these interpretations
can even be unknown at annotation time making it difficult, if
not impossible, to predict the interpretation that a given user
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will have in mind at retrieval time. Due to these problems, an
entirely new database search paradigm has been advocated by
various researchers over the last decade, under the name of
content-based retrieval [38], [42], [43], [49], [63]. The main
idea is to augment the traditional text-based search paradigm
with the ability to search by example, i.e., allowing users to
express queries according to the similarity to user-provided
examples. While we focus on the area of image retrieval, this
type of search can be easily applied to other signal modalities,
including audio [12], [31] or bio-informatics signals.

The design of an architecture for content-based image re-
trieval (CBIR) requires the specification of 1) an image rep-
resentation suited for search and 2) a similarity function that,
based on that representation, establishes a ranking of all images
in the database according to their similarity to a set of query
images. Since a natural goal for a retrieval system is to mini-
mize the probability of retrieval error, the retrieval problem can
be formally addressed with recourse to decision theory [60].
This implies a probabilistic formulation, where images are rep-
resented as observations from stochastic processes and the sim-
ilarity function becomes the posterior probability of the query
observations under the probabilistic models associated with the
image classes in the database. Many observation spaces are pos-
sible, including the widely popular space of pixel colors inherent
to the representation of an image by its color histogram [38],
[49], [55], or various feature spaces designed to capture proper-
ties such as texture [30], [34], [35] or object shape [2], [23].

The appeal of decision-theoretic retrieval, to which we also
refer to as probabilistic retrieval or maximum a posteriori prob-
ability (MAP) retrieval, derives from several properties of prac-
tical interest. In particular, it can be shown that 1) it does indeed
minimize the probability of retrieval error, 2) it generalizes a
significant number of other previously proposed retrieval ap-
proaches, 3) it establishes a common framework for handling
global (based on entire images) and local (based on image re-
gions) similarity, 4) it provides a natural foundation for the de-
sign of learning (relevance feedback) algorithms through belief
propagation, and 5) it allows the natural integration of multiple
content modalities (e.g., queries taking into account both im-
ages and the text of associated captions) [60]. There is, never-
theless, one significant hurdle to the practical implementation of
probabilistic retrieval systems: the computational complexity of
the MAP similarity function. Since the number of observations,
Q, extracted from a query image can be very large (e.g., for
color histogram methods each pixel originates an independent
observation), the straightforward evaluation of the MAP simi-
larity function has complexity O(Q)) per database class. This is
usually overwhelming and, due to this limitation, probabilistic
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similarity functions have not been widely used in the image re-
trieval literature, even though virtually all image representations
in current use are probabilistic in nature [6], [17], [34], [37],
[45], [47], [55].

Instead, the most popular strategy is to rely on a similarity
function that takes as arguments the probabilistic models for
both the query and database image class and produces a score
derived from their parameters. Examples include the use of Eu-
clidean distances between histograms (the most popular among
which is the ! norm of the histogram difference commonly re-
ferred to in the literature as histogram intersection (HI)) [19],
[55], the Mahalanobis distance between the mean value of the
image features [34], [50], or metrics derived from related op-
timality criteria (e.g., the earth mover’s distance between his-
tograms introduced in [47]). Operating directly on models char-
acterized by a small number P of parameters (e.g., histogram
bins), these alternative metrics have the advantage of a reduced
complexity O(P), typically orders of magnitude smaller than
O(Q) (while millions of pixels may be extracted from an image,
their color histogram typically has less than 256 bins). The cost
is suboptimal performance in terms of probability of retrieval
error. Indeed, it can be shown that many of these metrics can be
derived from the MAP similarity function by making various as-
sumptions and/or approximations (e.g., Gaussianity, lineariza-
tions, etc.) that are unrealistic for image data and/or discard in-
formation which is important for the evaluation of image sim-
ilarity [60], [61]. Experimental evaluation has also confirmed
that many of these alternative similarity functions cannot match
the performance of the MAP criteria [45], [60], [64].

In this work, we seek ways to avoid the penalty in retrieval
error inherent to the use of suboptimal similarity functions by
deriving computationally efficient ways to evaluate the MAP
function. The starting point is the well-known result that, up
to a constant, the negative log-likelihood of the query obser-
vations under a given database image class converges asymp-
totically to the Kullback—Leibler (KL) divergence between the
underlying query density and the density of that class. Since,
for P-parameter models, one would expect the KL divergence
to have computational cost O(P), there is no a priori reason to
believe that it should be more expensive than that of any other
parametric solutions. However, the KL divergence between two
probability density functions (pdfs) cannot always be expressed
as a closed-form expression of their parameters. In fact, there
is only a small set of models for which a closed-form expres-
sion is available. While this set includes models that have been
widely applied to the CBIR problem, such as the Gaussian, the
histogram, or variations/extensions [9], [20], [22], [34], such
models have important limitations in the context of the CBIR
problem. In particular, they either 1) are too simplistic to ac-
curately describe the densities associated with real images (e.g.,
the Gaussian), 2) rely on assumptions that can severely compro-
mise retrieval accuracy (e.g., independence between the compo-
nents of the feature space) [62], or 3) are too rigid to be useful
in the high-dimensional spaces required for accurate image dis-
crimination (e.g., the histogram) [64].

We consider two models, vector quantizers (VQs) [14] and
mixture densities [56], that overcome these fundamental limi-
tations but for which no closed-form expression for the KL di-
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vergence is currently known. Both models can be seen as ex-
tensions of the histogram. However, unlike the histogram, they
partition the feature space according to the distribution of the
data, leading to density estimates whose complexity is deter-
mined by the complexity of this distribution (number of clusters
that it contains) and not the dimension of the space itself. This
enables estimates of reasonable accuracy on high-dimensional
spaces, something that is impossible with histograms. The only,
yet significant, difference between the two models is that while
(like regular histograms) VQ-based density estimation proce-
dures partition the space into mutually exclusive cells, mixture
densities rely on soft partitions. We present two main results.
The first is that a closed-form solution to the nearest neighbor
problem, in the KL sense, does exist in the VQ case. Interest-
ingly, this result is obtained by exploiting the relationships be-
tween the VQ and the Gauss mixture (GM) and therefore also
provides new insights on the KL divergence between mixtures.
This leads to the second result, a closed-form approximation for
this quantity that is shown to be exact under two conditions. It is
argued that these conditions are met approximately in high-di-
mensional spaces, where the retrieval performance of the new
approximation is experimentally shown to be close to that of
the MAP function. The practical consequence of these theoret-
ical results is to enable probabilistic retrieval with sophisticated
density models at a computational cost similar to that achieved
with similarity functions in current use but higher retrieval ac-
curacy.

The paper is organized as follows. Probabilistic retrieval is
briefly reviewed in Section II, where we also introduce all the
probabilistic models considered in this work and analyze their
relationships. The closed-form solution for the nearest neighbor,
in the KL sense, between VQs is derived in Section III, which
also includes various intermediate results for the GM case. The
asymptotic likelihood approximation (ALA) is then proposed
for mixtures in Section IV, where the conditions under which it
is exact are also derived. An experimental evaluation of the re-
trieval performance of the ALA is then presented on Section V
where the latter is compared with the exact MAP solution and
two other similarity functions commonly used in the literature.
Finally, Section VI presents some conclusions and discusses fur-
ther applications of this work.

II. PROBABILISTIC IMAGE RETRIEVAL

We start by introducing some notation. The basic element
of image representation is an image observation. This can be a
single pixel or anumber n of them located in a predefined spatial
neighborhood. We denote the space of observations by Z C R™.
The scalar 7 is always used to denote the dimension of the space
Z. Observations are mapped into feature vectors by a transfor-
mation T' : Z — X. We refer to &' as the feature space, and
x = T'(z) afeature vector. Features are the elements of a feature
vector. We associate a class indicator variable Y € {1,..., M}
with the image classes in the database and denote the pdf of class
i by P;(2). The pdf of the query feature vectors is denoted by
P(z). The following theorem is a well-known result from deci-
sion theory.
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Theorem 1: Consider a feature space X', a query set X =
{®1,...,25} of N feature vectors drawn independently ac-
cording to a pdf P(z), a set of M database image classes with
pdfs P;(z),7 = 1,..., M, and the set of similarity functions

Then, the similarity function that minimizes the probability of
retrieval error, P(g(X) # Y), is the Bayes or MAP similarity
function

g"(X) = argmax P(Y = il X)

= argmaleogPi(:Bk) +logP(Y =14) (1)
Tk

Proof: See [8], [11], [13], among many other textbooks.

Retrieval systems based on the similarity function (1) are
referred to as probabilistic, MAP retrieval systems. In the re-
mainder of this paper, we will consider the classes to be a priori
equally likely, in which case the prior probabilities P(Y = 1)
can be ignored, but all results extend to the case of a nonuniform
prior. Under the uniform assumption, the MAP similarity func-
tion is also referred to as the maximum-likelihood (ML) simi-
larity function. We will also refer to P(z) as the query density
and to the density of the ith image class in the database P;(x)
as the database density when the class label  is not relevant or
can be inferred from context.

One immediate corollary of Theorem 1, that follows by
straightforward application of the law of large numbers [10], is
that ML similarity is asymptotically equivalent to maximizing
the expected log (EL) of P;(x) under P(z), i.e.,

g% (X)=arg max EL (P|| P;) = arg maX/P(.'E) log P;(z)dz.
2

Because P(z) is independent of 4, this is the same as finding
the database density that is closest to that of the query in the KL
sense, i.e., the value of 4 that minimizes the KL divergence

P(z)
Pi() dx.

KL (P||P;) = / P(z)log 3

A. Applications of KL Divergence to Signal Matching

The application of the MAP and ML rules to the classifica-
tion or matching of signals has a long history in communications
and signal processing (see, e.g., [57]). The KL divergence and
its applications to classification were introduced by Kullback in
the context of the principle of minimum discrimination infor-
mation (MDI) [25]. Given a density P (z) and the set M of all
densities that satisfy a constraint [ 1'(z)P,(z) = 6, MDI seeks
the density in M that is the “nearest neighbor” of P () in the
KL sense

Pi(a) = arg  min KL[P(@)| @)

Kullback showed that the minimum is 1) achieved by

x I
Pi(z) = e TP, (z)
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where Z is a normalizing constant, Z = | e~ M@ P (z)de,
and A a Lagrange multiplier [3] that weighs the importance of
the constraint; and 2) equal to

KL[P}(z)||Pi(z)] = —\0 — log Z.

Kupperman [25], [26] has shown that when all densities are
members of the exponential family (a family that includes many
of the common distributions of interest such as the Gaussian,
Poisson, binomial, Rayleigh, and exponential among others
[11]), MDI is equivalent to ML.

One of the earliest practical applications of this principle were
in the areas of speech coding and recognition, where Itakura and
Saito showed that the analysis step of linear predictive coding
(LPC) is mathematically equivalent to a minimum distortion
mapping that they referred to as the “error matching measure”
[21], but is now commonly known as the “Itakura—Saito dis-
tortion.” This similarity measure now forms the basis of most
speech coding systems. Itakura and Saito derived the LPC anal-
ysis equations as an asymptotic approximation to the ML es-
timate of the parameters of a Gaussian autoregressive source
with respect to a large training set of speech samples. Gray
and colleagues then showed that the Itakura—Saito style of dis-
tortion measures are asymptotic MDI measures between the
LPC model and sample autocorrelation of an observed speech
frame, where the minimum is over the set of probability func-
tions having the prescribed autocorrelation values [18].

All these developments assumed some form of Gaussianity,
even though Gray’s formulation did not require the original
speech to be Gaussian, only its synthesized counterpart. More
recently, the ML principle has been extensively used in areas
such as speech recognition. In this context, the sequence of
speech frames is modeled as a sequence of observations from
a hidden Markov source, and the ML rule used for phoneme
recognition [46]. Hidden Markov models are a generalization
of the mixture models that we analyze in this work. Unlike
the Gaussian case, the KL divergence between these models
does not have a closed-form expression. Hence, while the
asymptotic equivalence between maximizing likelihood and
minimizing KL divergence still holds, it is difficult to exploit
this connection in the design of efficient algorithms. This can
be a major computational bottleneck, by making the complexity
of the similarity function linear in the number of vectors to
classify.

B. Probabilistic Models

While the complexity of (1) is linear in the cardinality N of
the set of query vectors X, the complexities of both (2) and
(3) are only functions on the number of parameters in P(z)
and P;(z). Since the cardinality of the set of parameters is
typically quite small, the maximization of EL (or minimization
of KL divergence) is computationally more efficient whenever
these quantities can be computed in closed form. The avail-
ability of closed-form solutions is, however, not universal, i.e.,
closed-form solutions only exist for some density families. In
this subsection, we introduce the four types of probabilistic
models considered in this work—the Gaussian, histogram, VQ,
and GM—and analyze the relationships between them.
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1) Mixture Densities: A mixture density [56] is a proba-
bilistic model for stochastic processes with hidden structure.
Associated with each image class! there is a hidden variable
that defines a set of subclasses, which we denote by feature
subclasses or clusters. The feature vectors that compose images
from a given class are drawn in a sequence of two steps. First,
one among the feature subclasses is selected according to a set
of feature class probabilities. Feature vectors are then drawn
according to a feature class-conditional density. Denoting the
number of clusters by C, the sequence of feature class-condi-
tional densities by { P(z|w.)}<_;, and the feature class proba-
bilities by { P(w.)}<_,, this can be expressed as

C
P(z) =Y P(zlwe) P(we). “

The mixture model can account for nonstationary processes,
e.g., an image containing various objects of different texture,
and typically leads to a multimodal pdf. There is no closed-form
solution to the EL or KL divergence between two mixture den-
sities. We next show that the three other models under consid-
eration are special cases of the mixture model.2

2) The Gaussian Model: By simply making C = 1, it is
obvious from (4) that any parametric density is a particular case
of the mixture model. In particular, we obtain a Gaussian of
mean g and covariance ¥ when

= g(.’lf,[l,, 2) = ;ef%nmfﬂﬂé 5)

(2m)" %]

P(zlwr)

where

Iz~ ulg = (2w (- p). ©)

The EL between two Gaussians is3

%)) =
1 1
5 trace[Z; 2]——||# pillg

EL (G(=, m B)G(, p;,
——log(%lz -

)

and a similar expression is available for the KL divergence [25].

3) Vector Quantizers (VQs): To analyze the relationship
with VQ, we start by noticing that any mixture model induces a
soft partition of the feature space. In particular, given a feature
vector z, the posterior probability assignment of that vector to
each of the feature subclasses is

P(z|w;) P (wi)

i P(@|wr) P(wy)
HCIPTRIE s 1fP(.'E|wL)P(wL) >0
_ {Oz— ®

otherwise.

P(wilz) =

This leads to an explicit connection with VQ.

IFor simplicity, since all results discussed in this section are class indepen-
dent, we omit class subscripts from all pdfs.

2While some of these relationships are trivial or previously known, we include
them for completeness.

3See Lemma 3 for a proof of a generalization of this result.
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Theorem 2: 1f x is a random vector distributed according to

a GM
=" P(we)d

with covariance matrices

(@, pe Te(€))

Y.(e) = el, Ve

then
lim P,(w;|z) = 4 &+ I = will* < llw — Pk # i
e—0 0, otherwise
9

and
c

> 6(@ — ) Plwy)

=1

lin(l) P.(z) = (10)

where () is the Dirac delta function.
Proof: See Appendix 1.

Equations (9) and (10) are a generative model for a VQ. In the
VQ literature [14], (9) is known as the nearest neighbor condi-
tion (each point is assigned to the feature class associated with
the nearest-neighbor codebook entry), and (10) as the centroid
condition (this codebook entry is the mean of the cell associated
with the feature class). The quantization operation consists of
replacing each point by the codebook entry of the feature class
to which it is assigned. The efficient evaluation of the EL and
KL divergence between two VQs is the subject of Section III.

4) The Histogram Model: The histogram of a collection
of feature vectors S is a vector P = {p1,...,pc} associated
with a partition of the feature space X into C' cells, or bins,
{X1,...,Xc}, where p; is the percentage of vectors in S
landing on cell X;. It provides an empirical estimate of the
cluster probabilities P(w;) and, since all information other than
these probabilities and the cell centroids ¢; is discarded, has as
underlying generative model

= Z 8(z — ¢;)P(w;).

Comparing with (10), it is clear that the histogram is a partic-
ular case of the VQ model and, therefore, of the GM. In fact, the
only difference with respect to the generic VQ model is that, in
the histogram case, the cells into which the feature space is par-
titioned are defined arbitrarily and not learned from a training
sample. While, conceptually, this is a small difference, in prac-
tice it can lead to substantially different retrieval performance.
Because histogram partitions are arbitrary, there is no reason
to have different ones for the different image classes. Hence, a
universal partition (e.g., square cells of uniform size) is usually
adopted for all classes. When this is the case, the KL divergence
between two histograms is

Y

P(wj)
=2 Pl By

This solution, which we refer to as fixed partition or quantiza-
tion, is clearly not ideal: for any given image class there will be

L (P|P;)

12)
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many empty cells and a few strongly populated ones. A more
flexible approach, which is possible with VQ and mixture esti-
mates, is to rely on an adaptive partition scheme where a dif-
ferent partition is learned for each image class. This is, in the
context of this work, the true distinction between a VQ and
an histogram. While VQ-based representations have been fre-
quently used in the image retrieval literature [17], [22], [36],
[45], [58], they typically rely on a fixed partition learned from a
sample of all the image classes in database. This is only margin-
ally different from using histograms and does not really address
the major limitations of the histogram model. The problem is
that it is not clear how to evaluate the KL divergence between
two VQs or histograms defined on different partitions of the fea-
ture space.

C. Image Similarity Measures

Perhaps due to the lack of universal closed-form solutions,
and despite its appeal as the decision function that minimizes
the probability of retrieval error, the MAP similarity function
has not received significant attention in the CBIR literature. An
overwhelmingly more popular set of image similarity metrics is
that of the LP norms of the difference between densities

D, (P||P;) = argmin (/ |P(z) — P,L-(a:)|pd:c> o)
These norms are particularly common in the color-based re-
trieval literature, where they are used as metrics of similarity be-
tween color histograms. Assuming that the histograms are nor-
malized (3_; P(w;) = 1), the minimization of the L' distance
is equivalent to the maximization of the HI [55]

D1(P||P;) = argmaxzmin[P(w,n)7Pi(wr)] (14)

a similarity function that has become the de facto standard for
color-based retrieval [1], [23], [32], [45], [48], [51], [53]-[55].
Since histograms have exponential complexity in the dimension
of the feature space, and the ability to model the image depen-
dencies that characterize texture usually requires high-dimen-
sional feature vectors, an alternative set of similarity functions
has evolved in the texture retrieval literature. In this literature, a
popular representation is to summarize the pdf of the sth class
by a few of its moments, typically the mean g, and covariance
¥;, and rely on a quadratic distance

M(PIIP) = [l = mill3 (15)
to compare it to those of the query, g and ¥. The matrix B is
usually the identity, or a function of the covariances ¥ and ¥;
(11, [4], [6], [23], [32], [34], [38], [42], [44], [45], [48], [501,
[52]. It is clear from the comparison of (15) with (7) that the
minimization of these distances is equivalent to the maximiza-
tion of an approximation to the EL (where the terms that only
depend on the covariances are dropped), under the assumption
that all classes are Gaussian. This is a reasonable assumption
when the images are homogeneous, a property that holds for
most texture databases (whose images usually consist of uni-
form texture patches) but not for generic imagery.
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More recently, there has been interest in the joint modeling of
color and texture. One possibility to achieve this goal is by re-
sorting to extensions of the histogram, that preserve information
about the spatial relationships between colors. The most pop-
ular among such models is the autocorrelogram [20], a variant
of the histogram, that includes the distance between pixels as
an extra parameter. Besides the relative frequencies of the dif-
ferent colors, the autocorrelogram also stores the frequencies
with which the colors occur simultaneously in pairs of pixels
that are less than d image locations apart (where d is a free pa-
rameter). Another possibility is to rely on probabilistic models
that provide estimates of the joint density of local image neigh-
borhoods, e.g., a VQ. This has indeed been proposed by Rubner
and colleagues [47] that also proposed the earth mover’s dis-
tance (EMD) as a similarity metric for VQs. The EMD between
two quantizers

Pl@) =Y 8@ - w)P(r)
k
and

Qz) = Y 8@ - m)Qwr)

is defined in terms of a flow matrix F' = (f;;) that minimizes

W(P,Q,F) =" fijd(u;,n;) (16)
ij

where d(-, -) is a distance measure, under the constraints that the
fi; are nonnegative and

Z fij = P(wi)
Z fij = Q(wj)

Zfij = min ZP(M%ZQ(%’)

J
Given the optimal flow F*, the EMD is defined as

i Jii i, m;
W(p,Q) = = 5

As pointed out in [28], it is not difficult to show that, when the
VQs are normalized (3_; P(w;) = >_; Q(w;) = 1) the EMD
is identical to the Wasserstein distance [65] between probability
densities. Given two random variables A and B, with proba-
bility densities P and @, respectively, the Wasserstein distance
is the infimum of the expected distance between A and B, where
the infimum is taken over the expectations with respect to all
joint densities F'(A, B) that have marginal density P for A and
Q for B

a7

W(P,Q) = inf{Ex[d(A, B)] | (A, B) ~ F, A~ P, B ~ Q).

(13)
The Wasserstein distance has a long history in information
theory and statistics, where it is also known as the rho-bar dis-
tance, the d-bar distance, the Ornstein distance, or the Mallows
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distance, see e.g., [15], [16], [27], [33], [39]. Vallender has
shown [59] that when d(-, -) is the L metric

W(P.Q)= [ IDr(e) - Do(alits  (19)
where Dp (Dg) is the pdf associated with the pdf P(z) (Q(x)).
Hence, the EMD is not fundamentally different HI: while the
latter minimizes the L' distance between the probability densi-
ties, the former minimizes the L' distance between the associ-
ated distribution functions.

Given that these similarity functions either 1) have no explicit
connection to the minimization of the probability of retrieval
error, or 2) assume probability distributions, e.g., the Gaussian,
that are unrealistic for image retrieval, it is questionable that
they will lead to image retrieval systems that are optimal in a
minimum-probability-of-error sense. This goal is, in principle,
attainable by combining the MAP similarity function with less
restrictive probabilistic models, such as the GM, that can ap-
proximate any pdf arbitrarily well [29]. However, the absence
of closed-form solutions to the KL divergence between mixtures
makes this solution too complex from a computational point of
view, and applications of the KL divergence to image retrieval
have been limited to histogram-based representations [5], [22],
[45] (that have limited capacity as joint models of color and tex-
ture), or representations that assume independence between fea-
tures [9] (a questionable assumption that has been shown not to
work well in experimental studies [62]). In the following sec-
tions, we address the problem of computing the KL divergence
between multivariate mixture models.

III. KL DIVERGENCE BETWEEN VECTOR QUANTIZERS

We have seen in the previous section that the database density
P;(z) closest to that of the query P(z), in the ML sense, is that
which maximizes the EL of P;(z) under P(x)

i* = argmax EL (P||P;) = arg maX/P(z) log P;(z)dz.
1 1
(20)
For this reason, we will, from now on, simply refer to EL ( P|| P;)
as the retrieval similarity function. Furthermore, unless other-
wise noted, all densities are assumed to be mixtures of the form
(4). Given no constraint on the feature class-conditional densi-
ties P(x|w;) and P;(z|w,), it is only possible to derive a generic
expression for the similarity function.

Lemma 1: For a retrieval problem with query and database
densities P(z) and P;(z)

L (P||P)= ZP%/ (2|w;)de

P; .
r is =1)log———=d 21
+f Pt xu@=blos z] @

log Pi(wr)

where

17 if P,L-(wk|x) Z Pg(u)”.’t),

_ ik
Xi(®) = {0, otherwise

(22)
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Xk = {Z : xx(2) = 1} defines the partition of the feature space,
and
Pz|w;)

T, Plelwyae 11 € X0 and
P(a|w;, xi(z)=1)=q [ P(x|w;)dz>0
xko N
0, otherwise.

Proof: See Appendix II.

Equation (21) reveals two fundamental components of simi-
larity. The first

> Pl log Pi(wr) |

ik Xk

P(z|w;)dz

is a function of the feature class probabilities, the second

P,L-(m|wk)
ZP w; / P(z|w;)log 7Pi(wk|a:)

isa functlon of the class-conditional densities. The overall sim-
ilarity is strongly dependent on the partition {x1,...,xc,} of
the feature space determined by the database density P;(z), the

term
/ P(z|w;)dz
Xk

weighting the contribution of each cell according to the fraction
of the query probability that it contains. In particular, if S(w,)
is the support set of P(z|w,), then

/ P(z|wj)dz =0,
J Xk

/P(z|w]-)da::1,
Xk

/ P(z|w;)dr €(0,1), otherwise
Xk

dz

ifS(w]') Nxr =10

ifS(wj) C Xk

and fx  P(zx|w;)dx can be seen as a measure of overlap between
P(z|w;) and the cell x;, determined by P;(z|ws).

A. Histograms

When all image classes share the same feature class-condi-
tional densities and the partition of the feature space is fixed, de-
termining the similarity in closed form is straightforward. This
is the case of the histogram.

Lemma 2: If all mixture densities define the same hard par-
tition

1, if P(w|z) =

Xi(®) = {0, otherwise

where 65, is the Kronecker delta function

Pi(wl|m) = 6k,l7 Vi (23)

1, ifk=1
b= {0, otherwise 24
then
EL (P||P;) = P(w;)log Pi(w;)

J
—|—ZP wj / (x|w;) log P;(z|w;)dz.

Proof: See Appendlx I1I.
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Because, when all image classes share the same feature-class
conditional densities, i.e., P(x|w;) = Pn(zw;)Y(l,m), the
second term of (25) does not depend on i, this lemma implies
that

arg max EL (P||P;) = arg maxz P(wj)log P;(wj)
J

P(wj)
Pi(wj)

= argmin Z P(wj)log
J

and we obtain the expression for the KL divergence between
histograms (12).

B. Gauss Mixtures (GMs)

Lifting the restriction to a common hard partition makes
the computation of the KL divergence significantly more
challenging. We next concentrate on this case, starting with a
preliminary result.

Lemma 3: For any probability density P(z), x € R", a e R",
symmetric positive definite matrix B € R"*", and set , if

/ P(z)dz =1
Jx
then

/ P()|z — al3dz = trace B~ '$,] + [, — a3,
J X
where
i, = / P(z)z dz
X

£, = [ P@)a - in)a - i) ds.
X
Proof: See Appendix IV.
This lemma allows us to specialize (21) to GMs.

Lemma 4: For a retrieval problem with query density P(z)
given by (4) and GMs for the database densities P;(z)

C;
z) = Z Gz, p; 1., Xi 1) Pi(wr.)
k=1
where G(z, p, X)) is as defined in (5)

L(P||P) = ZP w; / m|w])dx{logP(wk)

R 1 _1e
+|log g(l"q,]‘,k#i,mgi,k)_ §trace[2i,;2q,j,k]

_/ P(z|wj, xx(z) = 1)10gf’1:(wk|$)d~"7}
Xk
(25)

Bk = / P(x|lw;j, xx(z) = 1)z d (26)
7 Xk

Sk = / Plalwj, xk (@) =1)(® — iy ; 2)(@ — by ; o)
Xk
27)

and x, and P(z|w;, xx(x) = 1) are as defined in Lemma 1.

Proof: See Appendix V.
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Equation (25) reveals that, for GMs, there are three compo-
nents to the similarity function. Consider, without loss of gen-
erality, the query feature subclass w; and the database feature
class wy. The first term in the equation is simply a measure of
the similarity between the class probabilities P(w;) and P;(wy)
weighted by the measure of overlap [ P(z|w;)dz. This term
is a generalization of the one appearing in (12) that accounts
for the lack of alignment between the partitions defined by the
query and database densities.

The term in square brackets is, up to constants that do not
depend on i, the KL divergence between the Gaussian P; (z|wy)
and a Gaussian with parameters f,, ; ; and ¥ ; 1[25]. From (26)
and (27), these are simply the mean and covariance of & under
P(z|w;) given that & € x. Hence, the second term is simply a
measure of the similarity between the feature class conditional
densities inside the cell defined by P;(#|wy). Once again, this
measure is weighted by the amount of overlap between the two
densities.

Finally, the third term weighs the different cells x according
to the ambiguity of their ownership. Recall that, Vz € yx,
Pz(wk|:r) > Pi(wl|.'t), Vi 75 k. If Pz(wk|:t) = 1, the cell is
uniquely assigned to wy and this term will be zero. If, on the
other hand, P;(wg|Z) < 1, then the cell will also be assigned to
other classes and the overall similarity will increase.

While providing insight on the different components of sim-
ilarity, (25) is not very useful from a computational standpoint
since the integrals that it involves do not have a closed-form so-
lution. There is, however, one particular case where such a so-
lution exits: the case where all mixture models are VQs.

C. Vector Quantizers (VQs)

Using Theorem 2, the VQ case can be analyzed by assuming
Gaussian feature class-conditional densities and investigating
what happens when all covariance matrices tend to zero. This
leads to the following result.

Lemma 5: For a retrieval problem with GMs for the query
and database densities

C
= Z g(ft, Ky s 62q,j)P(wj)
j=1

C;
P (z) = Zg(z,m,k762i,k)f’i(wk)

k=1

where G(z, p, X) is as defined in (5), when ¢ — 0

PHPLE ZP (4)] {logPi(wa(]-))

+ 23}(1) 108 G(ry j.a(j)s Bi,as): €2i00))

1 1 ¥
— getrace(Ei o) B “)]] }

where . is as defined in Lemma 1, ﬂ,m’a(j) and ﬁ}q,j,(,(j) as

defined in Lemma 4, and

a(j) =k <= llm,; — l‘i,k”}%:m <y ;
Proof: See Appendix VI.

- Il'i.,l||>2::,,, Vi # k.
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We are now ready to derive a closed-form expression for the
similarity between VQ-based density estimates.

Theorem 3: For aretrieval problem with VQ-based estimates
for the query and database densities

e
= ote = )P
225-'17 Il'Lk Pi(wr)

the KL similarity criteria reduce to

arg maxEL (P||P))

Plw:
=arg IIllIl hm ZP w;)log %w?))
; Wa(j)
AN Pty j— B I” ¢ (28)
J
where
a(g) =k = g ; — misll® < g ; — pialI*, VI # k.

Proof: See Appendix VIIL.

The theorem states that, for VQ-based density estimates, the
minimization of the KL divergence is a constrained optimization
problem [3]. Given a query VQ and a database VQ, one starts
by vector quantizing the codewords of the former according to
the latter, i.e., each codeword of the query VQ is assigned to
the cell of the database VQ whose centroid is closest to it. The
best database VQ is the one that minimizes a sum of two re-
sulting terms: a term that accounts for the average distortion of
the quantization (3 ; P(w;)lltt, ; — B a(;)|”) and the KL di-
vergence between the feature-class probability distributions. A
is a Lagrange multiplier that weighs the contribution of the two
terms. By taking the limit A — oo, all the emphasis is placed
on the average quantization distortion. This leads to two distinct
situations of practical interest. The first is when the two quan-
tizers share the same codewords. In this case, the quantization
distortion is null and the cost function becomes that of (12), i.e.,
the KL divergence between label histograms. Since equal quan-
tizers with equal codewords define equal partitions of the feature
space, this situation is equivalent to that of histograms and the
result is, therefore, not surprising.

The second is when the quantizers have different codewords
(and consequently define different partitions). In this case, the
quantization distortion becomes predominant and the retrieval
criteria reduces to

arg maxEL (P|[P;) = argmin Y~ P(w;) g — a0y
J

Note that, even in this case, the complexity of the retrieval oper-
ation is only O(C?n), where n the dimension of the space. C%n
is typically orders of magnitude smaller than the cardinality of
the query set () leading to significant savings over the direct
evaluation of the query likelihood. Compared to the complexity
of histogram-based techniques O(b™), where b is the number of
bins per axis, (28) trades off exponential growth in the number of
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dimensions by quadratic growth in the number of classes. Since
C is usually small, this enables significantly more accurate es-
timates in high-dimensional spaces. Consider, for example, a
space with n = 16: the complexity of (28) with 64 mixture com-
ponents (more than enough to accommodate the typical number
of clusters in densities of practical interest) is equal to the com-
plexity of HI with only two bins per axis (i.e., each feature quan-
tized in a binary fashion). It is natural to expect that the coarse
histogram estimates will lead to worse retrieval performance.

IV. THE ASYMPTOTIC LIKELIHOOD APPROXIMATION

Vector quantization has particular interest not only because
it leads to a closed-form similarity expression, but also because
it provides insights on how to approximate (25) in the case of
generic GMs. In particular, Lemma 5 suggests the following
approximation.

Definition 1: Given a retrieval problem with GMs for the
query and database densities

C
Plz) = Zg(fl‘ My, q,i) P (w;)

C;
G(@, i 1, Bi i) Pi(wr)
k=1
the ALA is defined as

N {10g1°vt(wﬂ(j>)

ALA (P||P)

1
log g(p'q ]7II'L 3(])721 ﬂ(_])) trace[zt H(])2’Is]]

where
Bj) =k <= |y, — tirl %:M — log P;(ws)
<ty — miallg,, —log Pi(wr),  VI#k. (29)

The following theorem provides the conditions under which the
approximation is exact.

Theorem 4: For the retrieval problem of Definition 1
ALA (P||P;) = EL (P||F:)
when the following two conditions hold.

(30)

1) Each cell xj of the partition determined by P;(z) is as-
signed to one feature class with probability one, i.e.,
Pi (wk |m ) = 17

Ve € xi. 31D

2) The support set of each feature class-conditional density
of the query mixture is entirely contained in a single cell
X of the partition determined by P;(z), i.e

v, 3k : S(wj) C X
Proof: See Appendix VIIL

(32)

In a strict sense, the conditions of the theorem only hold for
the VQ case since, when covariances are nonzero, the Gaussian
class-conditional densities have unbounded support and none
of the two conditions can be met. However, (31) will still hold
approximately if the distance between each pair of mean vec-
tors p, ;. is significantly larger than the spread of the associated
Gaussians. A one-dimensional (1-D) illustration of this effect
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is provided in Fig. 1, where we show two Gaussian class-con-
ditional likelihood functions and the posterior probability func-
tion P;(wq|z) for class 0. As the separation between the Gaus-
sians increases, the posterior probability changes more abruptly
and the partition becomes harder. If, in addition to this reduced
overlap between the mixture components of the database den-
sity, the spread of the Gaussians in the query density P(z) is
much smaller than the size of the cells x, then

/ P(z|w;)dr ~ 1
Jxs(4)

with high probability and condition 2) is also met approxi-
mately. In summary, the crucial assumption for the validity of
the ALA is that the Gaussian feature class-conditional densities
within each model have reduced overlap. The plausibility of
this assumption grows with the dimension of the feature space,
since high-dimensional spaces are more sparsely populated
than low-dimensional ones. In the next section, we provide
experimental evidence in support of this argument.

V. EXPERIMENTAL EVALUATION

We performed two sets of experiments to evaluate the perfor-
mance of probabilistic image retrieval with both the MAP and
ALA similarity functions. The first set was designed to test the
argument that the latter is a good approximation to the former in
high-dimensional spaces. The second was designed to evaluate
the retrieval performance of both similarity functions in a real
image retrieval task, and compare it to those of some previously
proposed approaches that are popular in the CBIR literature. All
experiments were performed on the Corel image database, and
the feature space was the space of coefficients of the 8 x 8 dis-
crete cosine transform (DCT) commonly used in image com-
pression [41].

A. The Accuracy of the ALA

To evaluate how the accuracy of the ALA varies with the di-
mensionality of the feature space, we relied on the following
Monte Carlo experiment:

* a test image was selected randomly from Corel and a
training sample obtained by extracting DCT coefficients
with a running window (moved over the image with in-
crements of two pixels in a raster-scan fashion);

Impact of the separation between two Gaussian densities (dashed) on the partition that they define (solid line).

* the ML parameters of a GM with eight feature subclasses
were computed from this sample, using the expecta-
tion—maximization algorithm [7];

* a sample with 10000 points was drawn from this mixture
model;

* for each sample pointz;,+ = 1,...,10 000, the maximum
posterior class-assignment probability mazyP(wg|®;)
was computed;

* the maximum posterior probabilities were histogramed.

This procedure was repeated for different space dimensions,
by projecting the mixture model of the 64-dimensional space
into lower dimensional subspaces, and the whole experiment re-
peated with various images. Fig. 2 presents the histograms of the
maximum posterior probability for 2, 4, 8, 16, 32, and 64 sub-
spaces. It is clear that, as the dimension of the space increases,
the probability that each sample is assigned to a single feature
subclass increases. For example, when . = 64, the probability
of this event is already close to 90%. This supports the argument
that, for GMs in high-dimensional spaces, it is reasonable to as-
sume that (31) holds.

B. Image Retrieval

In this subsection, we report the results of experiments on
a dataset containing 1500 images from 15 classes of the Corel
database, comparing the performance of probabilistic retrieval
against HI and color autocorrelograms. In these experiments,
we have used mixtures of eight Gaussians on a 48-dimensional
feature space consisting of the 16 lower frequency DCT co-
efficients from each color channel (see [60], [64] for details),
512-bin color histograms, and 2048-bin color autocorrelograms
(512-bin base histograms times four distances, see [20] for de-
tails). While, to be completely fair (exact same amount of com-
putation), we should have used 3072 bins for the histogram tech-
niques, preliminary experiments had shown no performance in-
crease over the results obtained with the number of parameters
above. In order to evaluate the goodness of the ALA, we eval-
uated the retrieval performance under both MALA (where we
maximize the ALA) and the, much more expensive, exact ML
similarity function. The plot on Fig. 3 presents the precision/re-
call curves for the four different retrieval solutions. It is clear
that the performance of HI is not very good, and autocorrelo-
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Fig. 2. Maximum class posterior probability histograms illustrate how the overlap between feature subclasses decreases in high dimensions. Space dimensions:

a)2,b) 4, c)8,d) 16, e) 32, f) 64). Note that plots d)—f) are clipped at 0.1 in the vertical axis to allow the visualization of the histogram tails.
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grams only improve performance by about 5%. Both approaches
are significantly less effective than either ML or MALA, that
show no significant differences in precision/recall. This sup-
ports the argument that, 1) ALA is a good approximation to the
true likelihood, and 2) MALA is the best overall solution when
one takes computational complexity into account. We conclude
by presenting some visual examples of the retrieval outcome.
Fig. 4 presents typical results for queries with horses, cars, and
oil paintings. These results illustrate some of the nice properties
of the probabilistic retrieval formulation: robustness to changes
in object position and orientation, robustness against the pres-
ence of distracting objects in the background, and perceptually
intuitive errors (in the painting example, two pictures of the
sphinx—pyramids class—are returned after all the paintings of
human figures).

VI. CONCLUSION

Probabilistic solutions have shown great promise for the
CBIR problem, but have traditionally been difficult to deploy in
practice due to the complexity of the MAP similarity function.
In this work, we have shown that this similarity function can be
computed efficiently when VQs are used as models for the pdfs
of the image features. We have also argued that in the more
general GM case, the MAP function can be well approximated
by a closed-form expression of reduced complexity, which
we denoted by ALA. The accuracy of this approximation
increases with the dimension of the feature space in which
similarity is computed. Experimental evaluation has shown that
the combination of probabilistic retrieval (using either of these

|
0.2
Recall

0.25 0.3 0.35 0.4

Precision/recall on Corel for HI, color autocorrelogram (CAC), ML, and MALA.

functions) with GMs can outperform retrieval techniques that
are popular in the area of CBIR.

While the focus of this work has been in image retrieval, we
believe that the conclusions will hold for any other databases
containing signals characterized by high-dimensional features.
This includes music, audio, video, and even signals that have
traditionally not been considered in the database literature, such
as those associated with DNA information. We also believe that
the theoretical significance of the results here presented goes
well beyond the information retrieval problem. Mixture models
are widely used in statistical modeling and computing the KL
divergence between them is a problem that appears frequently
when they are employed. Currently, this implies the use of
Monte Carlo procedures that are computationally expensive.
The complexity can be overwhelming when this process has
to be repeated within some other algorithm, e.g., expecta-
tion—maximization or inference algorithms for probabilistic
networks [24]. We believe that the results presented in this
work can dramatically improve the computational efficiency of
such algorithms.

APPENDIX 1
PROOF OF THEOREM 2

Since a mixture model with C classes of which z have zero
probability is the same as a model with C' — z classes of nonzero
probability, we assume, without loss of generality, that all the
classes have nonzero probability, i.e.,

P(w;) >0, Vi
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For Gaussian feature class-conditional densities, (8) then be-

comes
1

lle—uill2

=i e 2,

1+Zk¢i Bl Nlz—nilZ
e k

and for ¥; = eI, Vi

Plwilz) = Ty

“log P(wy)

1
P(wy 1 — T I~
T D p(@ﬁ))es(llf pll? =z —p )

Pu(wilz) =

Hence,
g Pt = {0 0l < o=l Ve £
e—0 0, otherwise.,
(33)
where
P (wi)
Pwi) + X gz, | =llz—p, 1y L (@r)
Since the set {z : ||z — p|| = ||z — p;||} has measure zero, (33)
is equivalent to (9) almost everywhere. Furthermore, because
some arbitrary tie-breaking rule is always necessary to vector-
quantize the points that lie on the boundaries between different
cells, the same rule can be applied to (33) and the two equations
are equivalent. Equation (10) is a direct consequence of the fact
that the Gaussian density converges to the delta function as its
covariance tends to zero [40]. O

a =

APPENDIX I
PROOF OF LEMMA 1

From (4) and (2)

L (P||P) ZP w]/ (2|w;) logZP (z|w;) Ps(w;)dx
:ZP(w]-)Z/ (z|w,) 10gZP (z|w;) P;(wy)dz.
j k 7 Xk

Using Bayes rule

i (W)
i (wri)

Pi(z|wr) P,
2 Pi@lwn) P,
we have Vk such that P;(wg|2) # 0

P (wi|®) = (34)

El:Pi(xlwz)P(wl dz = Py(wg|2)

Since ), P;(wk|®) = 1, from the definition of x; we obtain
Pi(wglz) > 0, V& € X%, and

i P
El(P||P) ZP wj Z/ (®|w;)log —(ﬂwk) (wk)d.'t

(Wi |2)

=> P(w)) [logPi(wk)/ P(z|w;)dz
j k Xk

- [ e o e

= ZP(%)Z/ | P(z|w;)dz [log P;(wy)

+/ P(z|w;, xi(z )_1)1oglljgz|k“|’;;dx].m
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APPENDIX III
PROOF OF LEMMA 2

Using the same argument as in the proof of Theorem 2, we
assume, without loss of generality, that all the classes in all mix-
ture models have nonzero probability, i.e.,

P(w;) >0 and P;(w;) > 0,
From (34), P;(wg|z) = 1 if and only if
ZPi(z|wl)Pi(wl) =0
I#k
and since all the terms in the summation are nonnegative, this
implies

Vi, i.

P5($|w1) =0 A7) 75 k

i.e., for a hard partition such as (23), the support sets of P(z|wy,)
and P;(z|ws) are contained in x. Hence,

/ P(.’E|w]')d.'l,‘ = 6k7j
Xk

and, since P;(wi|z) = 1,Vz € X1, (25) follows from Lemma 1.

0
APPENDIX IV
PROOF OF LEMMA 3
[P@le-alipis= [ P@le~ i, + i, - allpds
4 X X
— [ P@)la — iz + i, - allp
X
+2 [ P(2)(z - jt,)" B (j1,—a)dz
7 X
_trace[ ) (T — fu, ) (T — fu, ) T d
+||p‘z_a||B+2(l"z_ﬂz)TB_l(ﬂ‘z_a)
=trace[B™'Eg] + ||ft, — /3. O

APPENDIX V
PROOF OF LEMMA 4
Since P;(z|wy) = G(&, p; i, Bir) and [, P(zlwy, xr(2) =
1)dz = 1, simple application of the previous lemma results in

/ Plzlw;, xu(@) = 1) log P,(2|wr)dz =
. X]\

1
= 0g4/ P(z|w;, xi(z) = 1)dz
G Jy, L@ =1)

1

~ 5 | Pl @) = Dllo - il o
2 Y Xk

1 1 e
= log ——————— — —trace[X; . X, ;
g (27F)"|2i,k| 5 [ ik q,J,k]
1.
o lllq,5,k — Fik }2311\
5 e Hi gl

N 1 —1¢
= log g(l"'q,]’,kvll’i,hgi,k) - §trace[2i1,12q,j,k].

The lemma follows by simple algebraic manipulation of (21). [1
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APPENDIX VI
PROOF OF LEMMA 5

Whene — 0
G(@, By j,€Xq,5) = 6(T — g ;)

and since, from the definition of the delta function

[ 1@tz - wda = 1(u)
it follows that
| Ptz = xal)
x
On the other hand, from Theorem 2 and the definition of yy, if
€ — 0 then
P; ((wi]z) — 1, Ve € g,
and xx(p, ;) = 1if and only if
ttg; — B g%, < Iy —miglls, ., VI#k

The lemma follows from the application of these results to (25).
O

APPENDIX VII
PROOF OF THEOREM 3

From (26) and (27), when ¢ — 0
i"q,j,ﬂ(j) e
Ygial) — g5
Using Lemma 5

arg max EL (P|| P;)

1
= arg mzaxz P(wj){ log Pi(wa(j)) — itrace[zgi(j)zq,j]
J

+ lgr[l] IOg g(”’q,j: p’i,(y(j)? 62104(])) } :

Since, for a VQ, X; ,, = X, ; = I,Vk, j, the third term on the
right-hand side of the preceding equation does not depend on ¢,
and setting A = 1/2¢ leads to

arg max EL (P||P)=arg max ZP(wj) log Pi(wa(j))
J

- /\H_)Holo)‘“l"q,j - ﬂ'i,(y(]’)“2

P(w;)
zj:P(wj) log Prlwag)

=arg min lim
i A—o00

+)‘ZP(wj)|lp'q,j_I"’i,(y(]’)HQ .o

J

APPENDIX VIII
PROOF OF THEOREM 4

When condition 1) holds, the third term of (25) vanishes and
EL(P||F;)

1495

=Y P(w;) [ Plale)dad los )
i,k Xk
. 1 _1e
+ [IOgg(ﬂq,j,kyﬂi,kvzi,k) - gtrace[Eiyqu,ik]
(35)

Since, from condition 2) p4,; € Xk, it follows from (22) and (8)
that

Pi(py jlwr) Pi(wr) > Pi(pg jlwr) Pi(wi), Vil # k.
Taking logarithms on both sides and using the fact that
Pi(®|wm) = G(&, B, Bim)
leads, after some algebraic manipulation, to (29). It follows that

S(wj) C xp(;) and

/ P(aly)dz = 85 0.
Xk

Using the definition of P(z|w;, xx(2) = 1) in Lemma 1 it fol-
lows that

(36)

. _ 1y = J Pl=lwy), ifz € xsg;
P(alwj, xx(®) =1) = {0, otherwise.
and, using this result in (26) and (27), that
By ik = Ok,6i)Mq.j @37
Yq.ik = 0k,0() Xq.i- (38)
Combining (36), (37), and (38) with (35) leads to (30). O

ACKNOWLEDGMENT

The author would like to thank R. Gray for various insightful
discussions and pointers to the literature. The author would also
like to thank the anonymous reviewers for comments that helped
improve the manuscript.

REFERENCES

[1] J.Bach, “The virage image search engine: An open framework for image
management,” in Proc. SPIE Storage and Retrieval for Image and Video
Databases, San Jose, CA, 1996.

[2] S. Belongie, J. Malik, and J. Puzicha, “Matching shapes,” in Proc. Int.
Conf. Computer Vision, Vancouver, BC, Canada, 2001.

[3] D. Bertsekas, Nonlinear Programming. Cambridge, MA: Athena Sci-
entific, 1995.

[4] J. De Bonet and P. Viola, “Structure driven image database retrieval,”
in Proc. Neural Information Processing Systems, vol. 10, Denver, CO,
1997.

[5] J.De Bonet, P. Viola, and J. Fisher, “Flexible histograms: A multiresolu-
tion target discrimination model,” in Proceedings of SPIE, vol. 3370-12,
E. G. Zelnio, Ed., 1998.

[6] C.Carson, S. Belongie, H. Greenspan, and J. Malik, “Blobworld: Color-
and texture-based image segmentation using EM and its application to
image querying and classification,” IEEE Trans. Pattern Anal. Machine
Intell., no. 24, pp. 1026-1038, Aug. 2002.

[7]1 A. Dempster, N. Laird, and D. Rubin, “Maximum-likelihood from in-
complete data via the EM algorithm,” J. Roy. Statist. Soc., vol. B-39,
1977.

[8] L.Devroye, L. Gyorfi, and G. Lugosi, A Probabilistic Theory of Pattern
Recognition. New York: Springer-Verlag, 1996.

[9] M. Do and M. Vetterli, “Wavelet-based texture retrieval using gener-

alized Gaussian density and Kullback-Leibler distance,” IEEE Trans.

Image Processing, vol. 11, pp. 146-158, Feb. 2002.

A. Drake, Fundamentals of Applied Probability Theory. New York:

McGraw-Hill, 1987.

R. Duda, P. Hart, and D. Stork, Pattern Classification.

Wiley, 2001.

[10]

[11] New York:



1496

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

J. Foote, M. Cooper, and U. Nam, “Audio retrieval by rhythmic sim-
ilarity,” in Proc. 3rd Int. Symp. Musical Information Retrieval, Paris,
France, 2002.

K. Fukunaga, Introduction to Statistical Pattern Recognition.
Diego, CA: Academic, 1990.

A. Gersho and R. Gray, Vector Quantization and Signal Compres-
sion. Boston: Kluwer, 1992.

R. Gray, Probability, Random Processes, and Ergodic Properties.
York: Springer-Verlag, 1988.

R. Gray, D. Neuhoff, and P. Shields, “A generalization of Ornstein’s
d-bar distance with applications to information theory,” Ann. Probab.,
vol. 3, pp. 315-328, 1975.

R. Gray, J. Young, and A. Aiyer, “Minimum discrimination information
clustering: Modeling and quantization with Gauss mixtures,” in Proc.
IEEE Int. Conf. Image Processing, Thesaloniki, Greece, 2001.

R. Gray, A. Gray, G. Rebolledo, and J. Shore, “Rate-distortion speech
coding with a minimum discrimination information distortion measure,”
IEEE Trans. Inform. Theory, vol. IT-27, pp. 708-721, Nov. 1981.

J. Hafner, H. Sawhney, W. Equitz, M. Flickner, and W. Niblack, “Effi-
cient color histogram indexing for quadratic form distance functions,”
IEEE Trans. Pattern. Anal. Machine Intell., vol. 17, pp. 729736, July
1995.

J. Huang, S. Kumar, M. Mitra, W. Zhu, and R. Zabih, “Spatial color in-
dexing and applications,” Int. J. Computer Vision, vol. 35, pp. 245-268,
Dec. 1999.

F. Ttakura and S. Saito, “A statistical method for estimation of speech
spectral density and format frequencies,” Electron. Commun. Japan, vol.
53-A, pp. 3643, 1970.

G. Iyengar and A. Lippman, “Clustering images using relative entropy
for efficient retrieval,” in Proc. Int. Workshop on Very Low Bitrate Video
Coding, Urbana, IL, 1998.

A. Jain and A. Vailaya, “Image retrieval using color and shape,” Pattern
Recogn. J., vol. 29, pp. 1233-1244, Aug. 1996.
F.Jensen, An Introduction to Bayesian Networks.
Verlag, 1996.

S. Kullback, Information Theory and Statistics.
1968.

M. Kupperman, “Probabilities of hypothesis and information-statistics
in sampling from exponential-class populations,” Ann. Math. Statist.,
vol. 29, pp. 571-574, 1958.

V. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Sov. Phys—Dokl., vol. 10, pp. 707-710, 1966.

E. Levina and P. Bickel, “The earth mover’s distance is the Mallows
distance: Some insights from statistics,” in Proc. Int. Conf. Computer
Vision, vol. 1, Vancouver, BC, Canada, 2001, pp. 251-256.

J. Li and A. Barron, “Mixture density estimation,” in Proc. Neural In-
formation Processing Systems, Denver, CO, 1999.

F. Liu and R. Picard, “Periodicity, directionality, and randomness: Wold
features for image modeling and retrieval,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 18, pp. 722-733, July 1996.

B. Logan and A. Salomon, “A music similarity function based on signal
analysis,” in Proc. IEEE Int. Conf. Multimedia and Expo., Tokyo, Japan,
2001.

W. Ma and H. Zhang, “Benchmarking of image features for content-
based retrieval,” in Proc. 32nd Asilomar Conf. Signals, Systems, and
Computers, Asilomar, CA, 1998.

C. Mallows, “A note on asymptotic joint normality,” Ann. Math. Statist.,
vol. 43, pp. 508-515, 1972.

B. Manjunath and W. Ma, “Texture features for browsing and retrieval
of image data,” IEEE Trans. Pattern Anal. Machine Intell., vol. 18, pp.
837-842, Aug. 1996.

J. Mao and A. Jain, “Texture classification and segmentation using mul-
tiresolution simultaneous autoregressive models,” Pattern Recogn., vol.
25, no. 2, pp. 173-188, 1992.

G. McLean, “Vector quantization for texture classification,” IEEE Trans.
Syst., Man, Cybern., vol. 23, pp. 637-649, May/June 1993.

H. Neemuchwala, A. Hero, and P. Carson, “Feature coincidence trees
for registration of ultrasound breast images,” in Proc. IEEE Int. Conf.
Image Processing, Thessaloniki, Greece, 2001.

W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D.
Pektovic, P. Yanker, C. Faloutsos, and G. Taubin, “The QBIC project:
Querying images by content using color, texture, and shape,” in Proc.
SPIE Storage and Retrieval for Image and Video Databases, San Jose,
CA, 1993, pp. 173-181.

San

New

New York: Springer-

New York: Dover,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 7, JULY 2004

[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]
[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

D. Ornstein, “An application of ergodic theory to probability theory,”
Ann. Probab., vol. 1, pp. 43-58, 1973.

A. Papoulis, The Fourier Integral and its Applications.
Graw-Hill, 1962.

W. Pennebaker and J. Mitchell, JPEG: Still Image Data Compression
Standard. New York: Van Nostrand Reinhold, 1993.

A. Pentland, R. Picard, and S. Sclaroff, “Photobook: Content-based ma-
nipulation of image databases,” Int. J. Computer Vision, vol. 18, no. 3,
pp. 233-254, June 1996.

R. Picard, “Light-years from Lena: Video and image libraries of the fu-
ture,” in Proc. Int. Conf. Image Processing, Washington, DC, Oct. 1995.
R. Picard, T. Kabir, and F. Liu, “Real-time recognition with the entire
Brodatz texture database,” in Proc. IEEE Conf. Computer Vision, New
York, 1993.

J. Puzicha, Y. Rubner, C. Tomasi, and J. Buhmann, “Empirical evalua-
tion of dissimilarity measures for color and texture,” in Proc. Int. Conf.
Computer Vision, Korfu, Greece, 1999, pp. 1165-1173.

L. Rabiner and B. Juang, Fundamentals of Speech Recogni-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1993.

Y. Rubner, C. Tomasi, and L. Guibas, “A metric for distributions with
applications to image databases,” in Proc. Int. Conf. Computer Vision,
Bombay, India, 1998.

Y. Rui, T. Huang, M. Ortega, and S. Mehrotra, “Relevance feedback: A
power tool for interactive content-based image retrieval,” IEEE Trans.
Circuits Syst. Video Technology, vol. 8, pp. 644—655, Sept. 1998.

A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-
based image retrieval: The end of the early years,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 22, pp. 1349-1380, Dec. 2000.

J. Smith, “Integrated spatial and feature image systems: retrieval, com-
pression and analysis,” Ph.D. dissertation, Columbia Univ., New York,
1997.

J. Smith and S. Chang, “VisualSEEk: A fully automated content-based
image query system,” in Proc. ACM Multimedia, Boston, MA, 1996, pp.
87-98.

M. Stricker and A. Dimai, “Color indexing with weak spatial con-
straints,” in SPIE Storage and Retrieval for Image and Video Databases,
vol. 2670, San Jose, CA, 1996, pp. 29-40.

M. Stricker and M. Orengo, “Similarity of color images,” in SPIE
Storage and Retrieval for Image and Video Databases, San Jose, CA,
1995.

M. Stricker and M. Swain, “The capacity of color histogram indexing,”
in Proc. IEEE Computer Society Conf. Computer Vision and Pattern
Recognition, 1994, pp. 704-708.

M. Swain and D. Ballard, “Color indexing,” Int. J. Computer Vision, vol.
7, no. 1, pp. 11-32, 1991.

D. Titterington, A. Smith, and U. Makov, Statistical Analysis of Finite
Mixture Distributions. New York: Wiley, 1985.

H. Van Trees, Detection, Estimation, and Modulation Theory. New
York: Wiley, 1968.

K. Valkealahti and E. Oja, “Reduced multidimensional co-occurrence
histograms in texture classification,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 20, pp. 90-94, Jan. 1998.

S. Vallender, “Calculation of the Wasserstein distance between prob-
ability distributions on the line,” Theory Probab. Appl., vol. 18, pp.
824-827, 1973.

N. Vasconcelos, “Bayesian models for visual information retrieval,”
Ph.D. dissertation, MIT, Cambridge, MA, 2000.

—, “A unified view of image similarity,” in Proc. Int. Conf. Pattern
Recognition, Barcelona, Spain, 2000.

N. Vasconcelos and G. Carneiro, “What is the role of independence for
visual recognition?,” in Proc. Europ. Conf. Computer Vision, Copen-
hagen, Denmark, 2002.

N. Vasconcelos and M. Kunt, “Content-based retrieval from image
databases: Current solutions and future directions,” in Proc. Int. Conf.
Image Processing, Thessaloniki, Greece, 2001.

N. Vasconcelos and A. Lippman, “A probabilistic architecture for con-
tent-based image retrieval,” in Proc. IEEE Computer Vision and Pattern
Recognition Conf., Hilton Head, NC, 2000.

L. Wasserstein, “Markov processes with countable state space describing
large systems of automata,” Probl. Pered. Inform., vol. 5, no. 3, pp.
64-73, 1969.

New York: Mc-



