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Abstract

We derive the KL divergence between dynamic textures in state space. We also de-
rive a set of recursive equations for the calculation of the Kullback-Leibler divergence
between dynamic textures in image space. The recursive equations are computationally
efficient and require less memory storage than the non-recursive counterpart.
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1 Introduction

A dynamic texture is a linear dynamical system used to model a video sequence. Since
the dynamic texture is a generative probabilistic model, the KL divergence can be used
to compute distances between different dynamic textures. In this note, we derive the
KL divergence between dynamic textures. In Section 2, we start by reviewing the
probability distributions of the dynamic texture model. In Section 3, we derive the KL
divergence between the state spaces of two dynamic textures. In Section 4, we define
the KL divergence between the image spaces of two dynamic textures, and in Section
5, we derive a set of recursive equations for efficiently computing the image space
KL divergence. The recursive equations are computationally efficient and require less
memory storage than the non-recursive counterpart.

2 Dynamic Texture M odel

A dynamic texture [1] is an auto-regressive process modeled by

Tt41 — ACCt + B’l}t (1)

ye = Cxp+wy 2

where, z; € R" is an n dimensional state vector, iy, € R™ is the m dimensional
image vector, A € R™™" is the state transition matrix, v; ~,., N(0,1,,) is the n,
dimensional driving process (typically, n < m and n, < n) with transformation
B € R™", C € R™ " is a matrix containing the principal component vectors,
wy ~;;q N(0,R) with R € R™*™ is the image noise process, and z is the known
initial condition. Note that Bv; ~ N(0, Q) where Q = BB™T. We will also assume
that the covariance of the image noise, R, is diagonal. A dynamic texture model is
completely specified using the parameters © = {A, B,C, R, 2 }.

2.1 Probability Density Functions

We first obtain the probability density functions associated with the dynamic texture.
In the following we will assume that x is constant. The state is governed by a Gauss
Markov process [2], hence the conditional probability of the state is

plari—1) = Gz, Azi—1,Q) (3)
_ 1 e—%”mt—AItleé 4
(2m)" Q| @

where ||x||2Q = 27 Q2. Recursively substituting into the state equations, we have

¢
Ty = At:vo—i-ZAt_tii (5)
i=1
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A single state is the linear combination of Gaussian random variables, thus the proba-
bility of a single state is also Gaussian

plze) = N(ut,St) (6)
where
w = Alzg )
t1
S = AS AT +Q =) AQ)T (8)
i=0

2.1.1 State Sequence Probability

Since the driving process is Gaussian, the joint probability of a state sequence is also
Gaussian. Specifically, we have

k
Tirp = Ak,fCt + Z Ak_iB’LUt_H;_l (9)

=1
COV(.Tt+k, CCt) = AkSt (10)

Let 2] = (x1, 29, ..., x,) be the sequence of T state vectors, then the probability of x7
is

p(x7) = N(i, 2) (11)
where
Sl (ASl)T (AQSl)T cee (AT_lSl)T
H AS, S, (ASo)T -+ (AT28,)T
u= | P | A A4S, Ss o (ATS)T 1 (1)
Hr ATlS, AT26, AT*3‘S’3 . S

Alternatively, using conditional probability we have

p(ay) = P(ml)HP(IJIFl) (13)
i=2
- HG(zi,A:ci,l,Q) (14)
i=1
= L T LadmAnal} (15)

@m) QI
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The inverse of the covariance matrix X can be determined in closed-form by examining
the exponent term in (15). We will first look at an example where 7 = 3.

3 T T -1 _ATNH-1
> i — Az afy = [ iz ] [ A_Qqu 1292 } [ iz } (16)
i=1

o 17 ATQ A —ATQ ' [ =
* T2 QA Q! T2

+ (mf@flxl - 217,{@7114170 + I%ATQflA:co)

a1 15[ ATQ 1A+ Q! —ATQ! 0 1
= To —Q_lA ATQ_1A+Q_1 —ATQ_l To
3 0 QA Q! 3

— 22T Q  Axy + 2l ATQ ™ Ay

= @)™ — 272" + ¢ 17
where
ATQflA 4 Qfl —ATQ71 0
i = —-Q'A ATQ 1A+ Q™1 —ATQ! (18)
0 —-Q'A Q!
v o= [ 2dATQ™Y 0 0] (19)
c = xp ATQ Az (20)

By simply multiplying X~ with 3 from (12) (or generally, by recursively taking the
block matrix inverse of £ 1) it is easy to verify that ©~! is indeed the inverse of X.
Completing the square on (17) we have

3
> i — Azially = |27 — plls +c— p"S (21)
i=1
AIQ R
where = ¥b = | A%z¢ | andc — pTX "ty = 0, yielding
ASSCQ
3 A
Yol —Azially = (@7 —p)TE @ - p) (22)
i=1

Hence, we have reduced the product of Gaussians in (15) into a single Gaussian and
have thus found a closed-form solution to the inverse of the covariance matrix. Note
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that this also implies that || = |Q|". In general, the inverse of the covariance matrix
is the block Toeplitz matrix,

[ sy 52T 0o --- 0
Sy 81 52T 0
Yl=| 0 s 0 (23)
: : . S1 Sg
L0 0 0 s Q! |
where
51 = Qt+ATQ A (24)
s9 = —Q7'A (25)

Thus, the inverse of the covariance matrix of the state sequence probability is easily
computed, thereby avoiding the inversion of a potentially very large matrix.
2.1.2 Image Sequence Probability

Lety] = (y1, v, ---, y-) be the sequence of 7 image vectors, then the probability of y7
is

p(y1) = N(v,®) (26)
where

y=Cpu, ®=C2C" +R (27)

c 0 --- 0 R 0 0

0 O e 0 0 R - 0
C = B R == . . . (28)

: : 0 : : 0

0O 0 0 C 0 0 0 R

Unfortunately, y7 is m7-dimensional, where m is the number of pixels in the image
and 7 is the length of the image sequence, thus direct evaluation is computationally
intractable. For example, suppose we have an image patch of 48 x 48 pixels over
20 frames, then the sequence vector y7° will be 46,080 dimensional. The covariance
matrix of the Gaussian will have over 2 billion elements, requiring 15.8 GB using
double precision floating point.

3 KL Divergence between Dynamic Textures in State

Space

The KL divergence rate between two random processes with distributions, p(X) and
q(X) over X = (1, x2,...), is defined as

D(p(X) [4(X)) = Jim ~D(p(a]) a(a7))- (29)

t—oo T



Given that p(z) and ¢(z) are distributions of Markov processes, (29) can be simplified
using the chain rule of divergence [4],

D(p(a7) la(«7)) = D(p(x1) la(e1)) + Y D(p(wilei—1) lq(zili-1))  (30)

=2

Letp(27) and ¢(«7 ) be the probability distributions of the state sequence 27 = (z1,- -+, z,)
of two dynamic textures parameterized by (A1, @1, x01) and (Az, Q2, zo2). The KL
divergence of the initial state vector is

1 1 1 _ n
Do) ler)) = 3 I dvaon — Ao + 5108 {2 + 5(Q5 @) - & 3)

and the conditional KL term is

D(p(zi|wi-1) llg(zilwi-1))

ZTi|Ti—
/p(Iifl)/p($i|$i71)10gMdIidIif1

Q($i|$i—1)
. _ _ _ G(IivAlxifval) L
= /p(Ilfl)/G(I“Alzlfl,Ql)lOg G(mi7A2xi_l7Q2)dCCZdI1,1
_ / o1 AN |2 Q2] 10— nl de:
= p(mz_1)2 (A1 — A2)zi—1]lg, + log 1] +tr(Q5 Q1) — n| dzi—q
= % [tr(ATQz_lA(Sil + picapi ) +log % +tr(Q3 ' Q1) — n}

where A = A; — A,, and in the last line we have used the property that if p(z) has
mean y and covariance X,

/ p(@) || Az de = ElaTATB Aa]

E[tr(AT B~! Aza™]

tr(AT B~'AE[zzT])

= tr(ATBTAZ + pul))

Finally, summing over the conditional KL terms, the KL divergence on the RHS of
(29) is

L D(p(a]) la(e)) = 32)
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_ 1
|:10g @ + tI‘(Q2 1Q1) —n+ ; ||A1£C01 — AQIOQ”éz

1
2| 7@l

1 < o
+- Z;tr (ATQ7 M A(Si—1 + pi—1pl 1))

where A = A; — A,, and S;_; and u;_; are the covariance and mean associated with
the state x;_; of the first dynamic texture.

4 KL Divergence between Dynamic Texturesin Image
Space

Let p1(y7) and p2(y7) be the probability density functions of an image sequence for
two texture models parameterized by ©, and O, respectively. The KL divergence rate
[3] between the two textures models is defined as,

Dpr lIp2) = lim —D(er(57) Ip2(07)) (33)

Since p; and p,, are both Gaussian, there is a closed-form solution of the KL divergence
for length 7 given by
_ 1 |(I)2| -1 2
D(pl ||p2) = 5 1og@ + tr ((1)2 ‘131) + ||’Y1 — ’YQHq,z — mT (34)
Direct evaluation of the KL is computationally intractable, since the formula depends
on ®; and ®,, which are both very large covariance matrices.

5 Recursive Evaluation of KL Divergence

While direct computation of the image covariance matrix & is intractable, it is possible
to rewrite the terms of the KL divergence into a recursive form by using several matrix
identities. The resulting formulation reduces the required memory and is computation-
ally efficient.

We will now derive the recursive equations for each of the terms in KL divergence
equation (34) for time 7 given time 7— 1. We will refer to matrices (and vectors) at time
T as A7, and at time 7 — 1 as A{fl, where i is the index for p; or po. For simplicity,
we will also refer to the image at the current time step = as y, and the sequence of
preceding = — 1 images as Y. The covariance and means of p; and p, can be defined
recursively as

r Yy - Diyvy  Piyy }
— , BT = , 35
71 |: 'Yly :| ! |: ¢1yY d’lyy ( )

o Yoy | P2vy  davy
72 o |: 'YQy :| ’ (I)Q B |: ¢2yY ¢2yy :| (36)
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Similarly, we can define w1, p1x, X1xx, B1xe, D1eX, 21z TOr the probability of a
state sequence under p;, and likewise for p,.

5.1 MahalanobisDistance Term
For the Mahalanobis distance, we have the following recursion,
2 — —_1112 2
A e S L 9 (37)
where ||z[|3, is the update term with

2 = Goyy (®T )T T =) = (ry — 72y) (38)

(i)Q = ¢2yy_¢2yY(q)72—_1)71¢2Yy (39)

Substituting for the image covariance (in terms of the state covariance) and using the
matrix inversion lemma,

Poyy (@771

Yo, xCE(Ry' — Ry 'Co(B5 1) I'CIRSY)  (40)

= (%0, xACIR;! (41)
with
;o= (B T+ CIRyIC (42)
Ay = I-(CiRy'Co)(B; 1) (43)
The update covariance matrix becomes
Dy = ((2%222CF + Ry) — (C2X0,xAoCEIR; ) CaXox,CL  (44)
= (ol'yC5 + Ry (45)
where
Ty = Youw — YorxAs(CIR,1Co) Yoy, (46)
and the inverse of &, can be taken by using the matrix inversion lemma,
d;' = Ry — R;'Coly'CTRy! (47)
Iy = ;' +CrR;Cy (48)

Finally, the update to the Mahalanobis distance is computed as
2 = OoTauxDo(CIRy'Cip] '~ CIRy'Copz™)  (49)

— Cip1e + Coping

213, = 2"Ry'z— (2"Ry'Co)T3 ' (CT Ry'2) (50)



8 5 RECURSIVE EVALUATION OF KL DIVERGENCE

The computation of the distance requires the inverse of I's and I, both n x n matrices,
and 32, an n(r — 1) x n(7 — 1) matrix. Fortunately, the inverse of the 8> matrix can
be computed efficiently using recursion.

5.2 Inverseof Beta Matrix

We will now derive a recursive expression for inverting 3. Let f7 = (X7)~! +
CTR~'C. The inverse of ©.7 can be expressed recursively,

S1 Sg 0
(27)" ! = 502 S (51)
and thus,
s1+CTR™'C T 0
BT = 802 g1 (52)

where s; and s» are defined in (24) and (25). Taking the inverse of the block matrix,
we have

V7'71 VT71U7T
- [varl BH t+ U vtUY } 9
where
__(pT—1y—1 S92 _ VTillsg
Ur = -9 [ 0 } - [ Ur Vs } 9
V; = si+C'R'C— s o] ! [ 802 } (56)
= 51 +CTR'C — stV sy (57)

with initial conditions Uy = —(8%)"1sp and Vo = 51 + CTR1C — s (')~ 1sy and
Bt = Q4+ CTR™1C. The only matrices requiring inversion are V. and 3, both n x n
matrices.

5.3 Determinant Term

We will now derive a recursive equation to compute the determinant of 7. Taking the
determinant of the block matrix in (36),

log|®3| = log |‘I)§_1| + log |2y — ¢2yY(q)72—_1)71¢2Yy} (58)



5.3 Determinant Term 9

Looking at the update term, we have

log |2y — dayy (27 1) hayy| = log P, (59)

= log|CeI'2Cy + Ryl (60)

The determinant of ®7 can be computed in a similar manner. As is, the update term
requires the computation of the determinant of a m x m matrix, which can still be a
daunting task. Under the assumption that the image noise is iid, the amount of compu-
tation reduces further.

5.3.1 Evaluation of Determinant with iid image noise

We will assume that the noise of the image is iid, i.e. R = 021, and that the covariance
matrix is of the form ® = CXCT + o2, with ¥ € R™", C ¢ R™ " and CTC = 1.
Let C’ be am x m orthonormal matrix such that C’ = [C' X, where X is the matrix

of the remaining orthonormal basis vectors. Let ¥/ = [ %] 8 ] then we have
» = oxCT+o%I (61)
= 020" 4+ 0% (62)

We will now calculate the determinant of (62) by simultaneously diagonalizing the two
terms of the sum. Let ¥ = VAV be the eigen-decomposition of ¥/, i.e. V is the
matrix of eigenvectors where VIV = I, and A = diag(\1, ..., Anr, 0, ..., 0) is the
diagonal matrix of eigenvalues, where \; are the eigenvalues of X.

'Y C' 4 0T = C'VAVTCT 4 0%T (63)

Let A = C'V, and premultiply the RHS by A™ and postmultiply by A,

AT(C'VAVTCT +6°NA = A+0%0 (64)
log|AT®A| = log|A+o®I] (65)
e
log|®| = log|o” | 5A+1 (66)
ag
1 2
= log| A +1I|+mlogo (67)
g

Where in the third line we have used the fact that |A] = 1 because A is orthonormal.
Noting that the determinant of a diagonal matrix is the product of the diagonal,

log |®| :Zlog (%—i—l) + mlogo? (68)
i=1
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Thus the problem of finding the determinant of a m x m covariance matrix is reduced
to that of finding the n eigenvalues of 3 when the R is an iid covariance matrix.

54 TraceTerm

The trace term of the KL divergence can be reduced by using the matrix inversion
lemma and some simple manipulation.

tr [(®3) ' 7] tr [Ry' —R;'Co((X7) ' + CIR;'Cy) 'CIRS '] 4(B9)

= t[Ry'®]] - tr [(7) T CIRy '@TR; ' Gy (70)
= tr[Ry;1(C12]CT +Ry)) (71)
—tr[(87) ' C3 Ry (C1E]CT + Ri)R; ' Co
Finally, the trace term becomes,
tr [(@7)7'®]] = #[E](C{R;'Cy)] + tr[R; 'Ry (72)
—tr[(85) ' (C3 Ry 'RiR; ' Cy)]
— tr[(87) 7 (CI Ry 'C1)T] (CTR, ' Ca))
The first three terms of the trace can be computed recursively. Let,
_ T Tp—1 —1 7\—1 Tp-—1 —1
ar = tr[E7(C1 Ry Cy)] + tr[Ry "Ra] — tr[(87) (Co Ry RiR; " C2)]  (73)
Then, the recursion is,
ar = tr[81.(CTR;ICY)] + tr[Ry ' Ry) — tr[V. N (CT Ry ' R1 Ry 1 Cy)) (74)
—tr[V, U (CT Ry 'Ry Ry 1 Co) U] + a1y
The trace term is then computed as
tr [(®3)71@1] = ar — tr[(65) 7107 (75)
where,

g1 (CTR;C1)Y1x.(CF R Cs)

U7 = _ _ ¢ -~
(CTR;'C1)%12ax(CTR;'C2)  (CTRy'C1)T100(CT Ry ' Co)

(76)

Note that 53 and W™ are symmetric matrices with the same size, thus the trace of their
product is simply the sum of the entries of the Hadamard product.
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5.5 KL Divergencewith iid Noise Assumption

If the image noise can be modeled as a iid Gaussian, i.e Ry = o7l and Ry = 031,
some of the terms in the KL calculation simplify because C; and Cs are matrices of
orthonormal vectors. Specifically, the simplified equations are

1 , L
z = ?szmaxﬁz(cgcllﬁ Ve ul ™) = Crpag + Caopiog (77)
2
T 7\—1 1
By = (83) +—=1 (78)
03
1 T\—1
Ay = I——(5) (79)
g3
1
Iy = Xops— ;EQzXAQEQXm (80)
2
2 2 2
ar = 2w mZ - D) - DV uTu,) +ary (81)
03 03 2 P
W, %(CQTCl)Ele(OlTOQ)
v, = 1 T cTc i T T (82)
51(C2 C)Eax (C1Co) (03 C1)%aa (Cr Co)
L Ty, —1
Vi = si+—51—5V s (83)
03
A Appendix - Useful Matrix Identities
Matrix Inversion Lemma
(AP ve WWHE)y L= A AV(C +VHAV) IVEHA (84)
Block Matrix Determinant
A B _
‘ o D ‘_|A|\D—OA 'B| (85)

Block matrix inversion
-1
A B 0 0 I _ _
[c D] — [o D1}+[_D10}Q '[ T —-BD™ '] (86)

Q = A-BD'C (87)
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Mahalanobis Distance

A B
P = D-BTA'B (89)
X
- 90
2= |7 (90)
_ 2
Izl3, = =l + || BTA 'z -y, (91)
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