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Abstract

This is the supplemental material for “Classifying VideawbDynamic Textures”
[1]. It contains information about the attached videos, iaflreview of kernel PCA,
the “centered” versions of the algorithms discussed in #yeep and the derivation of
the inner-product between the feature-transformatiomsoiGaussian kernels.
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1 Introduction

This is the supplemental material for “Classifying VidediwDynamic Textures” [1].
The supplemental is organized as follows. Section 2 costaformation about the
attached video. Section 3 briefly reviews kernel PCA, andi@ee! presents the
“centered” versions of the algorithms discussed in [1]. aifin the derivation of the
inner-product between the feature-transformations of@&assian kernels appears in
Section 5.

2 Example Video

The following videos are attached to this supplemental, aneddescribed here. All
video is in Quicktime (h.264) format and should be viewabithvthe most recent
version of the Quicktime player (http://www.quicktimeron

e nont age_ucl a. nov — examples from the UCLA video texture database.

e nont age_ucl a_pan. nov — examples from the UCLA-pan database (see Fig-
ure 3), containing video textures with panning camera nmotio

e m scl ass_wat er. nov — a montage of chaotic water video clips (see Figure
5), which are poorly modeled by the dynamic texture.

3 Kernel PCA

Kernel PCA [2] is the kernelized version of standard PCA [@]ith standard PCA,
the data is projected onto the linear subspace (linearipahcomponents) that best
captures the variability of the data. In contrast, kerneARKPCA) projects the data
onto non-linear functions in the input-space. These noeadli principal components
are defined by the kernel function, but are never explicidynputed. An alternative
interpretation is that kernel PCA first applies a non-lirfeature transformation to the
data, and then performs standard PCA in the feature-space.

3.1 Learning KPCA coefficients

Given a training data set o¥ pointsY = [y1,...,yn] with y; € R™ and a ker-
nel functionk(y1, y2) with associated feature transformatiofy), i.e. k(y1,y2) =
(p(y1), #(y2)), the kernel principal components are the eigenvectorseotdvariance
matrix of the transformed data(y;). Assuming that the transformed data is centered
(i.e. has zero mean in the feature space), the c-th princgraponent in the feature-
space has the form [2]:

N
Ve = Zai,c¢(yi) (1)
=1
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The KPCA weight vectot, = [a1.c,...,an T is computed as
1
Qe = \/—A_C’UC (2)

where). andv,. are the c-th largest eigenvalue and corresponding eigenveicthe
kernel matrixZ, which has entriefK]; ; = k(yi, y;). The scaling o, ensures that
the principal component in the feature-space is unit length

Given the training data poin;, the c-th KPCA coefficient.. ; is computed as the
projection of¢(y;) onto the principal component, i.e.

N
Le,j = <¢(yj)7vc> = Zai,ck(yiayj) (3)

=1
and hence, the KPCA coefficienf§ = [z1,---,zy] of the training seft” can be
computed as¥ = o K, wherea = [a1, - -, a,] is the KPCA weight matrix, and

is the number of principal components.

3.2 Reconstruction from KPCA coefficients

KPCA directly models the mapping from the input-space to KIRCA coefficient-
space. However since the principal components are newglbctomputed explicitly
(only the projections on to them), the reverse mapping froendoefficient-space to
the input-space is not as straightforward to compute. GilierKPCA coefficients,
T = [T14,...,2n ], the KPCA reconstruction problemis to find the pre-imagm
the input-space that generated these coefficients. Ingett@s is an ill-posed problem
since noy; could exist for some KPCA coefficients [4].

The minimum-norm reconstruction method [4,5] aims to finelphe-imagey, that
minimizes the norm of the error in the feature-space,

yi = argmin|é(y) — > wepvel’ (4)
Y c=1
N
= argmink(ye, yr) — 2> vik(ye vi) (5)
Yt

i=1

wherey; = 22:1 zc 0 0. Whenthe kernel function is the Gaussian kerhgly:, y2) =
exp(—goz ly1 — y2]|*), a solution can be found using an iterative fixed-point proce

dure [4]. Given some initial gue@éo), refinements are computed using

N .

G+1) Zi:l %kg(yt(J),yi)yi 6

Yoo TN ) (6)
Zi:1 ’Vikg (yt ayi)

whereylfj) is the estimate of; at iterationj. In practice, the initial guesffo) can be
initialized using nearest neighbors in the coefficient spae. choosing/t(o) = Y=



such that* = argmin; ||z, — 2;||>. Minimum-norm reconstruction has been shown to
be useful in image de-noising applications [4].

Alternatively, reconstruction can also be achieved usithgiomethods, e.g. those
based on distance constraints [6], or by explicitly modglime function between the
KPCA coefficients and the input-space, e.g. using kerngilizigye regression [7].

4 Kernel Centering

In this section, we derive the “centered kernel” version&KBICA, minimum-norm
reconstruction, and the inner-product between KPCA coraptm

4.1 Centering for KPCA

So far we have assumed that the transformed data is centetieel feature-space. In
the general case, the transformed data must be centerdditgkply subtracting the
empirical mean, resulting in the centered feature transétion

1 N
oy) = o(y) = 5 D_ 3(un) 7

wherey; are the training data. The centered kernel matrix betweemptintsy andy’
is then

ky.y') = <<5(y), ¢~>(y')> (8)

N
= <¢(y) - % > byn), oY) — ¢(yn > ©)
n=1

)
Yn,Y) (10)

N
P
1 & 1 v
= k(yay/)_ﬁzk(ylvyn)_ﬁzk(
n=1 n=1
+$Zk(yn,ym)

Hence, for the training kernel, the centering is obtainedifthe non-centered kernel
as [7]

~ 1 1 1
K = K- NeeTK — NKeeT + meeTKeeT (112)
1 1
= (I — NeeT)K(I — NeeT) (12)

wheree is the vector ofN ones. Given a test poin, the centered kernel between
the test point and the training points is obtained from the-centered kernek’; =
[k(yta y1)7 ) k(ytayN)] as

~ 1

1 1
Kt = Kt — NBTK — NKteeT + meTKeeT (13)
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= K- %eeT) - %eTK(I - %eeT) (14)
_ L 7 L o7
= (K; ~Ne K)(I vee ) (15)

4.2 Centering for minimum-norm reconstruction
Minimum-norm reconstruction using the centered kernehisigby

2
(16)

y; = argmin||¢(y:) —

Zxc,tvc
Yt
= argmlnk(yt,yt —ZZxct<vc, (ye > Z:z:c tTer (Ve Ver ) (17)

= a'rgmlnk ytvyt _2Z$ctzanc ytuyn +Z :Ect (18)

= argmink(y, y:) — 2 Z% Yty Yn) (19)
Yt

n

Yt

= argmin [k(yt, yt) — % > k(e yn) + % > k(yn, ym)] (20)

n,m

23, [k@t,yn) o Sk — 3 k)
1
+ mzk(yuya‘)]

= argmlnk Yo ) = Zk Yt,Yn) — 22% Yt,Yn) (21)
+2;vnﬁgjk(yt,yj)
. 1 1
= argmink(ye, y) — 22 TN Z”Yi TN k(ye, yn) (22)
Yt n [

Hence, the reconstruction problem using the centered kezdaces to the standard
reconstruction problem with modified weights,

1 1
~n: n — a7 7 ~r 23
n = N%”MLN (23)



4.3 Centering for the inner-product between KPCA companent 5

4.3 Centering for the inner-product between KPCA componensg

Consider two data sefg/?} ¥, and{y?}~*,, and two centered kernel functiohs and
ks, with centered feature-transformatiapig)) andy)(y), i.e.

Falyn,v2) = (), 6(v2)) (24)
kv (y1, y2) = <1ﬁ(y1),1ﬁ(y2)> (25)

which share the same inner-product and feature-spacesnirRUKPCA on each of
the data-sets with their centered kernels yields the KPChghtenatricese and 3,
respectively. The c-th and d-th KPCA components in each effélature-spaces are
given by,

Uc

Z Qi cd(ys) (26)

Uq

> Brat(y)) (27)

Hence, their inner product is given by Z
(e, ua) = <Zai,caz<yz>,zjﬁj,w(y§>> (28)
- Zamﬁgd< ) D) ) (29)

= Z O‘i,cﬁjyd <¢(y;l) - NL Z d)(yk z Z >(30)
i,j @

k k

1
= > aiBa <g(y§l,y§)——N > gt vh) (31)
ij “

k

1 a b
—~ Fb;g(yi,yk) A N ;;g ym@/m))

= a7Gpy (e]TVO‘C) TGBy — (ejvﬁd)acTGe (32)
b
(e ac)(e Tﬁd)
+ NN, e’'Ge
T
= (ac - —(e;]ac)e) G (5d - —(ejvfd)e) (33)

whereg(y1,y2) = (é(y1), ¥(y2)), andG is the matrix with entriesG]; ; = g(y?, yg).
Hence, the computation for the centered kernel is equivédemsing the non-centered
kernel, but witha. and3; normalized by subtracting their respective means.

N (eTac)e

Qe — Qe —
Na

(34)
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B T
By = pu— &P, (35)
4.4 Summary

A summary of the modifications for centering the kernel far #arious algorithms is
given in the following table:

Algorithm Modification for centering
KPCA training kernel K = (I — tee")K(I — 1ee”)
KPCA testing kernel K= (K — xe' K)(I — fee”)

KPCA min-norm reconstruction | 4; = ~; — % Zj:l v; + %
inner-product btwn. KPCA comp|. &, = a, — (%Tv—ac)e, Bd = Bq — %fd)e

5 Inner-product between Gaussian feature-spaces

In this section, we derive the inner-product between thaufeatransformations of two
Gaussian kernels with different bandwidth parameters.di(gh be the feature trans-
formation induced by the Gaussian kernel with unit varianee

k(yr, o) = e~ 1wl = (@(y,), (y2)) (36)

Now consider the Gaussian kernel parameterized?yy

1

halyryn) = e aelvl (37)
1|1 1 2
— e llzn—dunl (38)

pl)e(s)

Hence, the feature transformation of the Gaussian witramagos? is related to the
Gaussian kernel with unit variance vig,(y) = ®(1y). Finally, for two Gaus-
sian kernels parameterized by and o7, the inner product between their feature-

transformations is

91, 92) = (Pa(1), Po(y2)) (40)
- (o) 2 (7)) @
| (42)
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