
Supplemental Material for “Classifying Video with Kernel D ynamic
Textures”

Antoni B. Chan and Nuno Vasconcelos

SVCL-TR 2007/03

April 2007

Supplemental Material for “Classifying Video with Kernel
Dynamic Textures”

Antoni B. Chan and Nuno Vasconcelos

Statistical Visual Computing Lab
Department of Electrical and Computer Engineering

University of California, San Diego

April 2007

Abstract

This is the supplemental material for “Classifying Video with Dynamic Textures”
[1]. It contains information about the attached videos, a brief review of kernel PCA,
the “centered” versions of the algorithms discussed in the paper, and the derivation of
the inner-product between the feature-transformations oftwo Gaussian kernels.

Author email:abchan@ucsd.edu

c©University of California San Diego, 2007

This work may not be copied or reproduced in whole or in part for any commercial purpose. Per-
mission to copy in whole or in part without payment of fee is granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: a notice that
such copying is by permission of the Statistical Visual Computing Laboratory of the University of
California, San Diego; an acknowledgment of the authors andindividual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any
other purpose shall require a license with payment of fee to the University of California, San Diego.
All rights reserved.

SVCL Technical reports are available on the SVCL’s web page at
http://www.svcl.ucsd.edu

University of California, San Diego
Statistical Visual Computing Laboratory

9500 Gilman Drive, Mail code 0407
EBU 1, Room 5512

La Jolla, CA 92093-0407

1

1 Introduction

This is the supplemental material for “Classifying Video with Dynamic Textures” [1].
The supplemental is organized as follows. Section 2 contains information about the
attached video. Section 3 briefly reviews kernel PCA, and Section 4 presents the
“centered” versions of the algorithms discussed in [1]. Finally, the derivation of the
inner-product between the feature-transformations of twoGaussian kernels appears in
Section 5.

2 Example Video

The following videos are attached to this supplemental, andare described here. All
video is in Quicktime (h.264) format and should be viewable with the most recent
version of the Quicktime player (http://www.quicktime.com).

• montage ucla.mov – examples from the UCLA video texture database.

• montage ucla pan.mov – examples from the UCLA-pan database (see Fig-
ure 3), containing video textures with panning camera motion.

• misclass water.mov – a montage of chaotic water video clips (see Figure
5), which are poorly modeled by the dynamic texture.

3 Kernel PCA

Kernel PCA [2] is the kernelized version of standard PCA [3].With standard PCA,
the data is projected onto the linear subspace (linear principal components) that best
captures the variability of the data. In contrast, kernel PCA (KPCA) projects the data
onto non-linear functions in the input-space. These non-linear principal components
are defined by the kernel function, but are never explicitly computed. An alternative
interpretation is that kernel PCA first applies a non-linearfeature transformation to the
data, and then performs standard PCA in the feature-space.

3.1 Learning KPCA coefficients

Given a training data set ofN pointsY = [y1, . . . , yN] with yi ∈ R
m and a ker-

nel functionk(y1, y2) with associated feature transformationφ(y), i.e. k(y1, y2) =
〈φ(y1), φ(y2)〉, the kernel principal components are the eigenvectors of the covariance
matrix of the transformed dataφ(yi). Assuming that the transformed data is centered
(i.e. has zero mean in the feature space), the c-th principalcomponent in the feature-
space has the form [2]:

vc =
N
∑

i=1

αi,cφ(yi) (1)

2 3 KERNEL PCA

The KPCA weight vectorαc = [α1,c, . . . , αN,c]
T is computed as

αc =
1√
λc

vc (2)

whereλc andvc are the c-th largest eigenvalue and corresponding eigenvector of the
kernel matrixK, which has entries[K]i,j = k(yi, yj). The scaling ofvc ensures that
the principal component in the feature-space is unit length.

Given the training data pointyj , the c-th KPCA coefficientxc,j is computed as the
projection ofφ(yj) onto the principal componentvc, i.e.

xc,j = 〈φ(yj), vc〉 =

N
∑

i=1

αi,ck(yi, yj) (3)

and hence, the KPCA coefficientsX = [x1, · · · , xN] of the training setY can be
computed asX = αTK, whereα = [α1, · · · , αn] is the KPCA weight matrix, andn
is the number of principal components.

3.2 Reconstruction from KPCA coefficients

KPCA directly models the mapping from the input-space to theKPCA coefficient-
space. However since the principal components are never actually computed explicitly
(only the projections on to them), the reverse mapping from the coefficient-space to
the input-space is not as straightforward to compute. Giventhe KPCA coefficients,
xt = [x1,t, . . . , xn,t]

T , the KPCA reconstruction problem is to find the pre-imageyt in
the input-space that generated these coefficients. In general, this is an ill-posed problem
since noyt could exist for some KPCA coefficients [4].

The minimum-norm reconstruction method [4,5] aims to find the pre-imageyt that
minimizes the norm of the error in the feature-space,

y∗t = argmin
yt

‖φ(yt) −
n
∑

c=1

xc,tvc‖2 (4)

= argmin
yt

k(yt, yt) − 2

N
∑

i=1

γik(yt, yi) (5)

whereγi =
∑n

c=1 xc,tαi,c. When the kernel function is the Gaussian kernel,kg(y1, y2) =

exp(− 1
2σ2 ‖y1 − y2‖2), a solution can be found using an iterative fixed-point proce-

dure [4]. Given some initial guessy(0)
t , refinements are computed using

y
(j+1)
t =

∑N

i=1 γikg(y
(j)
t , yi)yi

∑N

i=1 γikg(y
(j)
t , yi)

(6)

wherey(j)
t is the estimate ofy∗t at iterationj. In practice, the initial guessy(0)

t can be
initialized using nearest neighbors in the coefficient space, i.e. choosingy(0)

t = yi∗

3

such thati∗ = argmini ‖xt − xi‖2. Minimum-norm reconstruction has been shown to
be useful in image de-noising applications [4].

Alternatively, reconstruction can also be achieved using other methods, e.g. those
based on distance constraints [6], or by explicitly modeling the function between the
KPCA coefficients and the input-space, e.g. using kernelized ridge regression [7].

4 Kernel Centering

In this section, we derive the “centered kernel” versions ofKPCA, minimum-norm
reconstruction, and the inner-product between KPCA components.

4.1 Centering for KPCA

So far we have assumed that the transformed data is centered in the feature-space. In
the general case, the transformed data must be centered explicitly by subtracting the
empirical mean, resulting in the centered feature transformation

φ̃(y) = φ(y) − 1

N

N
∑

n=1

φ(yn) (7)

whereyj are the training data. The centered kernel matrix between two pointsy andy′

is then

k̃(y, y′) =
〈

φ̃(y), φ̃(y′)
〉

(8)

=

〈

φ(y) − 1

N

N
∑

n=1

φ(yn), φ(y′) − 1

N

N
∑

n=1

φ(yn)

〉

(9)

= k(y, y′) − 1

N

N
∑

n=1

k(y′, yn) − 1

N

N
∑

n=1

k(yn, y) (10)

+
1

N2

∑

n,m

k(yn, ym)

Hence, for the training kernel, the centering is obtained from the non-centered kernel
as [7]

K̃ = K − 1

N
ee

TK − 1

N
Kee

T +
1

N2
ee

TKee
T (11)

= (I − 1

N
ee

T)K(I − 1

N
ee

T) (12)

wheree is the vector ofN ones. Given a test pointyt, the centered kernel between
the test point and the training points is obtained from the non-centered kernelKt =
[k(yt, y1), · · · , k(yt, yN)] as

K̃t = Kt −
1

N
e

TK − 1

N
Ktee

T +
1

N2
e

TKee
T (13)

4 4 KERNEL CENTERING

= Kt(I −
1

N
ee

T) − 1

N
e

TK(I − 1

N
ee

T) (14)

= (Kt −
1

N
e

TK)(I − 1

N
ee

T) (15)

4.2 Centering for minimum-norm reconstruction

Minimum-norm reconstruction using the centered kernel is given by

y∗t = argmin
yt

∥

∥

∥

∥

∥

φ̃(yt) −
∑

c

xc,tvc

∥

∥

∥

∥

∥

2

(16)

= argmin
yt

k̃(yt, yt) − 2
∑

c

xc,t

〈

vc, φ̃(yt)
〉

+
∑

c,c′

xc,txc′,t 〈vc, vc′〉 (17)

= argmin
yt

k̃(yt, yt) − 2
∑

c

xc,t

∑

n

αn,ck̃(yt, yn) +
∑

c

(xc,t)
2 (18)

= argmin
yt

k̃(yt, yt) − 2
∑

n

γnk̃(yt, yn) (19)

= argmin
yt

[

k(yt, yt) −
2

N

∑

n

k(yt, yn) +
1

N2

∑

n,m

k(yn, ym)

]

(20)

− 2
∑

n

γn



k(yt, yn) − 1

N

∑

j

k(yj , yn) − 1

N

∑

j

k(yj , yt)

+
1

N2

∑

i,j

k(yi, yj)





= argmin
yt

k(yt, yt) −
2

N

∑

n

k(yt, yn) − 2
∑

n

γnk(yt, yn) (21)

+ 2
∑

n

γn

1

N

∑

j

k(yt, yj)

= argmin
yt

k(yt, yt) − 2
∑

n

(

γn − 1

N

∑

i

γi +
1

N

)

k(yt, yn) (22)

Hence, the reconstruction problem using the centered kernel reduces to the standard
reconstruction problem with modified weights,

γ̃n = γn − 1

N

∑

i

γi +
1

N
(23)

4.3 Centering for the inner-product between KPCA components 5

4.3 Centering for the inner-product between KPCA components

Consider two data sets{ya
i }Na

i=1 and{yb
i }Nb

i=1, and two centered kernel functionsk̃a and
k̃b with centered feature-transformationsφ̃(y) andψ̃(y), i.e.

k̃a(y1, y2) =
〈

φ̃(y1), φ̃(y2)
〉

(24)

k̃b(y1, y2) =
〈

ψ̃(y1), ψ̃(y2)
〉

(25)

which share the same inner-product and feature-spaces. Running KPCA on each of
the data-sets with their centered kernels yields the KPCA weight matricesα andβ,
respectively. The c-th and d-th KPCA components in each of the feature-spaces are
given by,

uc =
∑

i

αi,cφ̃(ya
i) (26)

ud =
∑

i

βi,dψ̃(yb
i) (27)

Hence, their inner product is given by

〈uc, ud〉 =

〈

∑

i

αi,cφ̃(ya
i),
∑

j

βj,dψ̃(yb
j)

〉

(28)

=
∑

i,j

αi,cβj,d

〈

φ̃(ya
i), ψ̃(yb

j)
〉

(29)

=
∑

i,j

αi,cβj,d

〈

φ(ya
i) − 1

Na

∑

k

φ(ya
k), ψ(yb

i) −
1

Nb

∑

k

ψ(yb
k)

〉

(30)

=
∑

i,j

αi,cβj,d

(

g(ya
i , y

b
j) −

1

Na

∑

k

g(ya
k, y

b
j) (31)

− 1

Nb

∑

k

g(ya
i , y

b
k) +

1

NaNb

∑

k,k′

g(ya
k , y

b
k′)





= αT
c Gβd − (eTαc)

Na

e
TGβd − (eTβd)

Nb

αT
c Ge (32)

+
(eTαc)(e

Tβd)

NaNb

e
TGe

=

(

αc −
(eTαc)

Na

e

)T

G

(

βd − (eTβd)

Nb

e

)

(33)

whereg(y1, y2) = 〈φ(y1), ψ(y2)〉, andG is the matrix with entries[G]i,j = g(ya
i , y

b
j).

Hence, the computation for the centered kernel is equivalent to using the non-centered
kernel, but withαc andβd normalized by subtracting their respective means.

α̃c = αc −
(eTαc)

Na

e (34)

6 REFERENCES

β̃d = βd − (eTβd)

Nb

e (35)

4.4 Summary

A summary of the modifications for centering the kernel for the various algorithms is
given in the following table:

Algorithm Modification for centering
KPCA training kernel K̃ = (I − 1

N
ee

T)K(I − 1
N

ee
T)

KPCA testing kernel K̃t = (Kt − 1
N

e
TK)(I − 1

N
ee

T)
KPCA min-norm reconstruction γ̃i = γi − 1

N

∑

j=1 γj + 1
N

inner-product btwn. KPCA comp. α̃c = αc − (eT αc)
Na

e, β̃d = βd − (eT βd)
Nb

e

5 Inner-product between Gaussian feature-spaces

In this section, we derive the inner-product between the feature-transformations of two
Gaussian kernels with different bandwidth parameters. LetΦ(y) be the feature trans-
formation induced by the Gaussian kernel with unit variance, i.e.

k(y1, y2) = e−
1

2
‖y1−y2‖

2

= 〈Φ(y1),Φ(y2)〉 (36)

Now consider the Gaussian kernel parameterized byσ2,

kσ(y1, y2) = e−
1

2σ2
‖y1−y2‖

2

(37)

= e−
1

2
‖ 1

σ
y1−

1

σ
y2‖2

(38)

=

〈

Φ

(

1

σ
y1

)

,Φ

(

1

σ
y2

)〉

(39)

Hence, the feature transformation of the Gaussian with varianceσ2 is related to the
Gaussian kernel with unit variance viaΦσ(y) = Φ(1

σ
y). Finally, for two Gaus-

sian kernels parameterized byσ2
a and σ2

b , the inner product between their feature-
transformations is

g(y1, y2) = 〈Φa(y1),Φb(y2)〉 (40)

=

〈

Φ

(

1

σa

y1

)

,Φ

(

1

σb

y2

)〉

(41)

= e
− 1

2

‚

‚

‚

1

σa
y1−

1

σ
b

y2

‚

‚

‚

2

(42)

References
[1] A. B. Chan and N. Vasconcelos, “Classifying video with kernel dynamic textures,” inIEEE Conf. Com-

puter Vision and Pattern Recognition, 2007.

[2] B. Schölkopf, A. Smola, and K. R. Müller, “Nonlinear component analysis as a kernel eigenvalue prob-
lem,” Neural Computation, vol. 10, no. 5, pp. 1299–1319, 1998.

REFERENCES 7

[3] R. Duda, P. Hart, and D. Stork,Pattern Classification. John Wiley and Sons, 2001.

[4] S. Mika, B. Schölkopf, A. Smola, K. R. Müller, M. Scholz, and G. Rätsch, “Kernel PCA and de-noising
in feature spaces,” inNeural Information Processing Systems, vol. 11, 1999, pp. 536–52.

[5] B. Schölkopf, S. Mika, A. Smola, G. Rätsch, and K. R. Müller, “Kernel pca pattern reconstruction via
approximate pre-images,” inICANN, Perspectives in Neural Computing, 1998, pp. 147–52.

[6] J.-Y. Kwok and I.-H. Tsang, “The pre-image problem in kernel methods,”IEEE Trans. Neural Networks,
vol. 15, no. 6, 2004.

[7] T. De Bie, N. Cristianini, and R. Rosipal,Handbook of Computational Geometry for Pattern Recogni-
tion, Computer Vision, Neurocomputing and Robotics. Springer-Verlag, 2004, ch. Eigenproblems in
Pattern Recognition.

8 REFERENCES

SVCL-TR
2007/03
April 2007

Supplemental Material for “Classifying Video with
Kernel Dynamic Textures”

Antoni B. Chan

