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ABSTRACT OF THE DISSERTATION

Visual Understanding of Complex Human Behavior via Attribute Dynamics

by

Weixin Li

Doctor of Philosophy in Electrical Engineering
(Signal and Image Processing)

University of California, San Diego, 2016

Professor Nuno Vasconcelos, Chair

Visual understanding of human behavior in video sequences is one of the

fundamental topics in computational vision. Being a sequential signal by nature,

most critical insights of human activity can only be perceived via modeling the

temporal structure. Despite an intuitive proposition, this task is non-trivial to

accomplish. One of the most significant obstacles comes from the enormous

variability and distinct properties of temporal structure at different levels of the

human motion hierarchy, which spans a wide range of collectiveness, time and

space, semantic granularity, and so forth. This has posed a rigorous challenge

xix



for a solution that is supposed to be capable of simultaneously capturing the

instantaneous movements, encoding the mid-level evolution patterns, coping

with to long-term non-stationarity or content drifts, and being invariant to intra-

class variation and other visual noise.

While most of the previous works in the literature focus on addressing

some aspects of this problem, we aim to develop a unified framework to handle

them all for complex human activity analysis. Specifically, we propose to model

the temporal structure of human behavior on a robust, stable yet general rep-

resentation platform that encodes some semantically meaningful concepts (or

attributes). This platform bridges the gap between low-level visual feature and

the high-level logical reasoning, bringing in benefits such as better generalization,

knowledge transfer, and so forth. While attributes take care of abstracting seman-

tic information from short-term motion in low-level visual signal, the dynamic

model focuses on charactering the mid-range evolution patterns in this space. To

cope with long-term non-stationarity and intra-class variation for complex events,

we derive two encoding schemes that capture the zeroth and first order statistics

of the attribute dynamics in video snippets, instead of precisely characterizing

the whole sequence, which is prone to over-fitting due to the sparse nature of

complex event instantiation.

The proposed framework is implemented via several novel models, to-

gether with the corresponding technical tools for statistical inference, parameter

estimation, similarity measure, encoding statistics at the model manifold, and so

on. In particular, a dynamic model is proposed to capture the evolution pattern in

sequential binary data, denoted the binary dynamic system (BDS), which consists

of a binary principal component analysis for modeling appearance and Gauss-

Markov process to encode dynamics. A mixture model is further derived from

xx



BDS to characterize multiple types of dynamics in a large data corpus. Based

on variational methods, an accurate and efficient approximate inference scheme

is developed for the state posterior to handle the intrinsic intractability; and a

variational expectation-maximization algorithm is also derived for parameter

estimation. Through these tools, measurements that quantify the similarity or

dissimilarity of two binary sequences are devised from the perspective of control

theory, information geometry, and kernel methods. Besides, approaches to en-

code the statistics of sequential binary data in the manifold of statistical models

are proposed, resulting in the bag-of-words for attribute dynamics (BoWAD) and

vector of locally aggregated descriptor for attribute dynamics (VLADAD).

Empirical study on challenging tasks of complex human activity analysis

justifies the effectiveness of the proposed framework. Our solution not only

produces the state-of-the-art results for event detection, but also enables recount-

ing that provides the visual evidence anchored over time in the video for the

prediction, and facilitates tasks like semantic video segmentation, content based

video summarization, and so forth.

xxi



Chapter I

Introduction
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I.A Visual Understanding of Human Motion

I.A.1 Background

Computational vision (a.k.a. machine vision, computer vision) is a subject

of scientific research and engineering that studies the acquisition, extraction,

processing, analysis, and interpretation of visual signals (e.g., infra-red, visible

lights) recorded from the real world in order to produce specific information to

facilitate the understanding of the signal sources [102, 44].

Among many subfields of computational vision, visual understanding

of human behavior has been one of the most fundamental topics dating back to

the early age of the research subject, when it was specifically developed as the

visually sensing component for robotics, or a computational model to interpret

biological visual systems [75, 76, 102]. The goal of visual understanding of hu-

man behavior is to extract information from video sequences to answer questions

such as the identity of the subject(s) (who), the categories of events in the past,

now and in the future (what), the time and place of the event (when and where),

and the fine-grained patterns of the event (how) [3]. Facilitated by the processing

power of modern computing machines, and spurred by the demand of managing

tremendous amount of visual data generated by ubiquitous mobile recording

devices during the Internet era, the application of visual understanding of hu-

man behavior has reached a far broader horizon with practical applications to

machine-human interaction [37], augmented or virtual reality [1, 27], automated

media data management [172, 81], intelligent surveillance [25, 96], etc.

While the early focus is set on recognizing some simple gestures and

primitive motion [34, 19, 15, 121, 14, 142, 51], recently the major attention has

been turn to more challenging and realistic tasks, where more complex human
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activities are considered in unconstraint enviroments [93, 130, 111, 85, 114, 58, 81].

This not only enables a substantially larger range of applicability of behavior

understanding, but also poses several technical challenges.

I.A.2 Challenge of Modeling Temporal Structure

Being a proposition of both scientific and practical values, understanding

human motion in video via computational machinery, however, is non-trivial to

fulfill in the technical point of view. In the big picture, human behavior is a broad

topic that can be represented in a hierarchical structure spanning a large scale of

time and space, collectiveness, semantic granularity, and so forth. Analysis of

this complex concept via visual signal incurs difficulties from several sources.

The temporal structure modeling is one of the most prominent challenges.

A video sequence is not a random collection of images. The temporal order of

video frames conveys intrinsic information of the event critical for interpreting

the story. Human behavior at different temporal scales, however, exhibits di-

vergent properties, as illustrated in Fig. I.1. These diverse temporal properties

require distinct strategies to characterize. Recent studies have shown that, instan-

taneous or primitive types of motion, e.g., running, jumping, can be effectively

captured by 1) low-level image features computed within local spatiotemporal

visual support, and 2) the statistics of these features aggregated over a few video

frames [92, 142, 140, 165, 117], which has its roots in the classical research on

biological vision and motion perception [77]. Movements of longer duration

with mid-range temporal structure, such as sports activity “long jump,” typically

requires the characterization of the temporal distribution of the sub-module

actions that compose the activity [111, 155, 48]. In the even more complex case of

high-level events, which can last for hours, the visual content are so sophisticated
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t
0s 0.08s 0.16s 0.24s 0.32s 0.40s

(a) Examples of short-term instantaneous primitive motion “running”. These types of
movements can be captured by statistics aggregated over low-level image features.

t
0s 0.8s 1.6s 2.4s 3.2s 4.0s

(b) Examples of mid-term continuos smoothing activity “gymnastics vault”. These types
of behavior are best characterized with sequential description of short-term actions (e.g.,
“running”-“jumping”-“touching pad”-“somersault”-“landing”).

t
30s 60s 90s 120s0s

(c) Examples of long-term complex event “wedding ceremony.” Intra-class variation is so
significant that learning holistic temporal structure most likely leads to instance-specific
depictions that hardly apply to other examples from the same event class.

Figure I.1: Divergent properties of human behavior at different temporal scales.
Key frames of two video instances at each granularity are exemplified.
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that local evidences are commonly used in an orderless fashion to justify the

event recognition for better generalization [154, 98, 88]. In the extreme of the

temporal scale, where a typical application is surveillance video analysis, contin-

uous visual content are streaming in endlessly. For this type of problem, both the

short-term evolution patterns and the long-term non-stationarity due to content

drift are two critical aspects of the data to account for. Challenges due to the

variability in temporal structure of human activity are further compounded by

the sparseness of training examples as the temporal scale increases [114]. Overall,

the interplay between the stationarity and non-stationarity of human motion

results from several complex sources, including sociological, psychological, phys-

ical, biological factors [149, 20, 9, 59, 104]. As such, modeling temporal structure

of human behavior is a complex proposition that requires a principled way of

capturing these divergent properties at different level of granularity, to achieve

the best balance among representativeness, selectivity, and invariance to noise

such as intra-class variation.

Many approaches in computational vision for modeling human motion

mostly focus on only one of these critical factors, making them somehow biased

to a specific case of motion. The popular bag-of-visual-words (BoVW) has been

widely adopted for human action recognition [142, 93, 166]. This paradigm

posits that a visual entity (e.g., an image, a video sequence) can be represented

by an orderless corpus of lower-level visual features aggregated from it. While

very robust to noise, BoVW is not flexible enough to encode critical temporal

information in many scenarios, even after enhancement with rigid pooling cells

over time [93, 99, 90]. Similarly, the visual data representation via semantically

meaningful concepts, of arising interest recently, also ignores the temporal in-

formation in human action, though it provides a more general intermediate
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platform that bridges the gap between low level features and high level semantic

reasoning [89, 125, 115, 101, 72]. On the other hand, another popular proposal for

human motion analysis exclusively focus on modeling the evolution pattern, in

appreciation of the significance of temporal structure for human motion. While

motivated by insights, most of works in this direction aim to solve the problem

with one single model, or operate on the unstable, low-level, task-specific, or

computationally expensive representations, which cannot generalize to more

challenging scenarios, e.g., open-source videos [82, 28, 95].

I.B A Unified Temporal Structure Hierarchy for Hu-

man Behavior

To motivate and justify our technical solution, we start by introducing the

unified temporal structure hierarchy for human behavior. In the big picture, we

propose that, according to the stationarity of visual content, any human behavior

can be categorized into one of the three layers in the hierarchy of Fig. I.2.

At the very low-level of the hierarchy resides the primitive motion, e.g.,

“running,” “jumping,” “waving hands.” These types of instantaneous move-

ments are 1) the fundamental constituent elements of more complex actions [3];

and 2) mostly constraint by physical motion laws of human bodies, e.g., New-

tonian mechanics, thus the space of possible configurations is bounded [157].

In this light, learning the representation for these movements by exhaustive

instantiation of the whole example space is feasible given today’s data resources

and computational technology. In practice, this is frequently implemented with

data-driven strategies such as descriptors computed by statistics of low-level

image features in local spatiotemporal support with salient motion followed by
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unsupervised motion prototype clustering [92, 165] or recently popular neural

networks that learn low-level action templates from tremendous amount of video

data [73, 81, 148]. It has been shown that, these schemes can confidently and

precisely model behavior at this level, achieving spectacular results in action

recognition [117, 118].

More complex behavior is observed at the middle layer of the hierar-

chy. One such activity is typically comprised of a sequence of local primitive

movements in a particular pattern, which results from the underlying procedure

controlled or driven by social convention (e.g., a couple exchanging rings at a

wedding ceremony), legal regulations (e.g., crowd crossing roads at a street in-

tersection), domain knowledge or instructions (e.g., sport activity “high-jump”),

etc [20, 9]. Due to this constraint, homogeneity holds reasonably well for these

activities of the same category despite some possibility of variation. For example,

while athletes may perform the sport activity “triple jump” in slightly different

styles (e.g., various duration of running, in-air movements), they always follow

the sequence of “running-skipping-jumping-landing,” as determined by the

expert instruction. Another critical observation at this level is that the homo-

geneity is only preserved on top of an appropriate basis of representation for local

constituting movements. Unreliable features (e.g., low-level image optical flow)

can lead to activity representation significantly vulnerable to noise and difficult

to generalize [82, 28, 95], which nullifies the uniformity among instances from a

category.

Finally, a long-term sophisticated story anchors at the top layer of the

hierarchy. In most cases, such events are subject to very loose constraints, if

any, and exhibit substantial intra-class variation or flexibility in plot, since the

latent factors (e.g., human psychological processes) governing behind are highly
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unpredictable and diversified [149]. This inhomogeneity is further compounded

by the fact that a video sequence is not necessarily an objective visual recording

of chronological events, but a product of video post-processing such as montage

sequences for artistic representation in filmmaking [129]. Both of these unique

properties pose a challenge for temporal structure modeling at this level that

do not exist at previous two. As such, the underlying factors that generate the

video event must also be perceived at a very high level of abstraction, where

it is usual that temporal stationarity may not hold and most clues are loosely

connected over time. In this case, robustness plays a far more important role in

event characterization, rather than the precise instance-level selectivity.

Overall, the hierarchy provides a unified interpretation of temporal struc-

ture at different levels. In the bottom-up direction, both intra-class diversity

and variation increase as the space of feasible behavior configurations expands

exponentially, while possible instantiation becomes more sparse at the same time.

This motivates our strategy for complex human behavior modeling comprised of

technical solutions of three distinct flavors, which correspond to various balance

points for the trade-off between selectivity and invariance at different layers of

the hierarchy. For the low-level, we rely on the BoVW benchmark for instanta-

neous action representation since it can be learnt with the non-parametric method

given moderate amount of training data, as in our case. At the mid-level, we

propose to combine the semantic attribute representation, which preserves the

temporal homogeneity, and the dynamic model, which regularizes the temporal

structure characterization. This provides a solution that models the temporal

structure with flexibility on top of a reliable basis that can generalizes well. For

inhomogeneous complex events at the high-level, due to the sparse examples

for training and loosely correlated local event evidences scattered over time, we
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resort to the corpora encoding frameworks that capture the distribution of multi-

ple local sub-events in the statistical manifold of models of attribute dynamics.

Despite losing the capability of depicting the holistic chronological story, these

frameworks can still characterize the evolution patterns of local events at the

mid-level that are sufficient to identify most high-level event categories, while

exhibits better robustness to intra-class variation than those modeling the global

temporal structure, as will be seen in the experiment. This is further shown to

enable a recounting scheme that can provide visual content evidences to justify

high-level event recognition.

I.C Contributions of the Thesis

In this thesis, we address the problem of modeling temporal structure

for visual human behavior understanding across several scales via a statistical

perspective. We specifically focus on the use of dynamic systems for encoding

insightful properties of complex human behavior at the mid-level. This results in,

from the theoretical viewpoint, a hierarchical representation of human behavior

that characterizes temporal structure at distinct levels; and, from the technical

viewpoint, a new set of statistical tools for modeling, analyzing, and encoding

discrete time-series. The main contributions of the thesis are summarized as

follows.

I.C.1 A Hierarchical Representation of Temporal Structure for

Human Behavior

To cope with the highly divergent characteristics of human behavior at

different levels, and leverage the power of dynamic modeling in capturing these
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insights, we propose a hierarchical representation of human behavior according

to the nature of temporal structure. In this hierarchy, we posit that, while short-

term instantaneous movements are modeled by statistics of low-level features,

mid-range activities are represented in the space of semantically meaningful

concepts or attributes, whose evolution is depicted by smooth dynamic processes

(denoted attribute dynamics). Higher level events, however, frequently exhibits

substantial non-stationarity. Together with the sparseness of training examples,

temporal structure at this level is encoded with robust framework such as the

zeroth and first order statistics of mid-level dynamics, resulting in bag-of-words

for attribute dynamics (BoWAD) representation and locally aggregated descriptors

for attribute dynamics (VLADAD). Combined with proper choices of models at

different levels, we show that state-of-the-art results in complex activity or event

recognition and recounting can be achieved.

I.C.2 Statistical Models of Dynamics for Sequential Binary Data

We present a novel statistical model that captures the evolution patterns

behind sequences of multi-dimensional binary observations (referred as binary

sequences, sequential binary signals, for the rest of the thesis), denoted the binary

dynamic system (BDS). BDS consists of two major modules: 1) the binary principal

component analysis (PCA) for observation, and 2) the Gauss-Markov process for

dynamics. This formulation generalizes the conventional linear dynamic system

to the binary signal. A mixture model, denoted the mixture of binary dynamic

systems (mix-BDS), is derived to enhance representation power of BDS for large

corpus where multiple distinct types of patterns are present. A simplified version

of mix-BDS, bag-of-words for attribute dynamics (BoWAD) is also introduced to

model dynamics of binary data for large-scale problems.
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I.C.3 A Statistical Toolkit for Reasoning, Learning and Encod-

ing of Sequential Data with Dynamic Systems

We also develop technical solutions via principled paradigms to address

challenges such as statistical inference, parameter estimation, similarity measure,

and discriminative data encoding for the proposed dynamic models. Specifically,

a variational inference scheme is devised, via rigorous lower-bounds of log sig-

moid nonlinearity, to compute the posterior of hidden states in the BDS. This is

shown to provide a tight approximation to the exact result that is intractable, out-

performing the state of the art in both accuracy and efficiency. In the similar way,

a variational expectation-maximization algorithm is also proposed for parameter

estimation of BDS and its mixture model. Further more, to facilitate the use of

the proposed model in discriminative tasks, similarity or dissimilarity measures

between sequential binary data are derived from three distinct perspectives,

including information geometry, dynamic system theory, and kernel methods,

which generalize previous techniques for real-valued data domain. These are

shown to produce competitive results on complex activity or event recognition

tasks.

I.C.4 Applications to Complex Human Activity Recognition

Using the proposed dynamics modeling framework, technical toolkits,

and hierarchical interpretation of human behavior, we accomplish state-of-the-art

performance on several popular tasks of human behavior analysis. We propose

that, while short-term primitive human motion can be captured by statistics of

low-level image features, characterization of finer-grained temporal structure

is critical for describing mid- and high-level activities. To this end, mid-range



13

activities should be characterized on an intermediate layer of visual concepts,

instead of low-level representations suffers from noisy, unstable, or task-specific

computationally expensive observations. This is implemented by modeling dy-

namics on the mid-level semantically meaningful attribute space for complex

human activity understanding. Further more, we show that modeling dynamics

for mid-level behavior while encoding higher-level events with robust schemes

achieves the best balance between selectivity to target categories and invariance

to the inherent huge intra-class variations of the problem. Empirical study on

benchmark complex event detection datasets shows that, our strategies not only

produce competitive recognition results, but also enable the finer-grained re-

counting outputs that provide semantically meaningful visual content anchored

in video as the evidence to justify the event prediction.

I.D Organization of the Thesis

The rest of the thesis is organized as follows. We start by introduction of

technical tools for dynamics modeling. In Chapter II, the technical formulation

of the dynamic models are presented, including the review of the linear dynamic

systems, the proposed binary dynamic system, and its mixture version. We

derive the statistical inference schemes for these models in Chapter III. These

consist of the review of the variational inference framework for models with

hidden variables, the lower bounds adopted to approach the intractable log

sigmoid nonlinearity, and the efficient routines to compute the evidence lower

bound, mean and covariance of the variational distributions based on the popular

Kalman smoothing filter from the control theory literature. Chapter IV details

the parameter estimation for the proposed models. These are implemented either
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from the perspective of dynamic texture learning, resulting in a sub-optimal

routine; or via the maximum likelihood estimation principle, resulting in the

variational expectation-maximization algorithm. Different encoding schemes for

sequential data are introduced in Chapter V, where three types of representation

architectures are derived to capture dynamics in sequences for discriminative

tasks, using results from document analysis, information geometry, and kernel

methods. We address the problem of complex activity recognition and recounting

in Chapter VI. We present the motivation and insights into the temporal structure

modeling of complex events, and derive solution based on our technical tools

and analysis of the problem. This leads to a unified activity representation

that efficiently and effectively captures evolution patterns of human motion at

different temporal scales, producing state-of-the-art results on event recognition

and recounting. Finally, the thesis is concluded in Chapter VII, where some

possibilities of future works are also discussed.



Chapter II

Statistical Models of Dynamic

Systems

15
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One of the most popular strategies to capture the temporal structure

of sequential data in literature is implemented via the dynamic Bayesian net-

work (DBN) [133], which characterizes the probabilistic dependency among

multiple factors at each temporal instant and over time. A common scheme of

DBN is formulated as the state-space model (SSM) [107], which posits sequence

of multi-dimensional data as noisy observations mapped from a state process

in a hidden lower-dimensional space. Originating from the control theory for

description of physical systems [45], SSMs have been shown to be flexible in

modeling dynamic processes in many other applications across numerous fields

of science and engineering [62, 40, 12]. Within the large family of SSMs, one

of the most popular architectures is the linear dynamic system (LDS), which

assumes linear Gaussianity for both hidden states and observed signals. Despite

its limitation of linear assumption, LDS has not only achieved substantial suc-

cesses, but also inspired other variants that can handle more complex scenarios

[41, 107, 169]. One notable enhancement of LDS is the generalized linear dy-

namic system (GLDS) that combines the exponential-family distributions with

the Gauss-Markov process to handle a large variety of types of data [49], includ-

ing the binary dynamic system (BDS), which is of specific interest to human

motion analysis in the attribute space [101].

II.A Definitions and Notations

In this section, notations, definitions and brief results are presented to

facilitate the understanding of the technical presentation throughout this thesis.

Table II.1 summarizes the notations and definitions.
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Table II.1: Notations and definitions.

notation definition
x (boldface) a vector.

x1:τ a vector sequence: {x1, · · · , xτ}.
A (capital) a matrix

xi, Ai,j the i-th element of x, the element at (i, j) of matrix A.
A (capital) a scalar constant, or random variable.

Aᵀ, xᵀ transpose of A, x.
tr(A) trace of square matrix A ∈Rd×d.

A[r,s], x[i] block t, s of a matrix A, and block i of a vector x.
Ar,:, A:,c row r of matrix A, column c of matrix A.

A† pseudoinverse of A.
Sd the set of d× d symmetric matrices: {A|A ∈Rd×d, A = Aᵀ}.
Sd
++ the set of d× d positive-definite matrices: {A|A ∈ Sd, A � 0}.

p(x;θ), pθ(x),
or pθ

the probability density (or mass) function (PDF or PMF) of a
random vector x, with parameter θ.

〈 f (x)〉p(x;θ) expectation of function f (x) with respect to x: Ex∼p(x;θ) [ f (x)].

KL(pθ1 ||pθ2)
the Kullback-Leibler (KL) divergence [86] between distributions
pθ1 and pθ2 :

〈
ln pθ1(x)

〉
pθ1
−
〈
ln pθ2(x)

〉
pθ1

.

‖x− y‖2
Σ the (squared) Mahalanobis distance: (x− y)ᵀΣ−1(x− y).

N (µ,Σ) a Gaussian distribution with mean µ ∈Rd and covariance
Σ ∈Rd×d.

H[q(X)] the entropy of X distributed as q(X): −
∫

q(x) lnq(x)dx.

G(x;µ,Σ) the PDF of N (µ,Σ): (2π)−d/2|Σ|−1 exp{−1
2 ||x− µ||2Σ},

x,µ ∈Rd, Σ ∈Rd×d.
Y|X random variable Y conditional on random variable X.
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x1 x2 x3

y1 y2 y3

xτ

yτ

Figure II.1: Graphical model for the linear dynamic system or binary dynamic
system.

It can be shown [86] that, when pθ1 = G(x;µ1,Σ1) and pθ2 = G(x;µ2,Σ2),

KL(pθ1 ||pθ2) =
1
2

[
tr(Σ−1

2 Σ1) + ||µ1 − µ2||2Σ2
− ln

∣∣∣Σ−1
2 Σ1

∣∣∣− d
]
. (II.1)

The entropy of two random variables X and Z can be factorized according to

H[q(X, Z)] =−
∫

x,z
q(x,z) lnq(x,z)dxdz

=−
∫

x,z
q(x|z)q(z) lnq(x|z)q(z)dxdz

=−
∫

z
q(z)

[∫
x

q(x|Z = z) lnq(x|Z = z)dx + lnq(Z = z)
]

dz

=
∫

z
q(z)H[q(X|Z = z)]dz + H[q(Z)]. (II.2)

II.B Linear Dynamic Systems

Video sequences are frequently modeled as samples of a linear dynamic

system (LDS)

{ xt+1 = Axt + vt, (II.3a)

yt = Cxt + wt + u, (II.3b)
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where xt ∈RL and yt ∈RD (of mean u) are a hidden state and observation variable

at time t, respectively; A ∈RL×L a state transition matrix that encodes dynamics;

C ∈RD×L an observation matrix that maps state to observations; and x1 = µ + v0

an initial condition. Both states and observations have additive Gaussian noise

v0 ∼N (0,S), vt ∼N (0, Q) and wt ∼N (0, R) (t > 1, t ∈Z).

LDS parameters can be learned by maximum likelihood (ML), using the

expectation-maximization (EM) algorithm [146]. A simpler approximate learning

procedure was, however, introduced by [39]. This is known as the dynamic

texture (DT) and decouples the learning of observation and state variables by

interpreting the LDS as the combination of a principal component analysis (PCA)

and a Gauss-Markov process. Under this interpretation, the columns of C are

principal components of the observed video data and the hidden state x is a

vector of PCA coefficients. The observation parameters are first learned through

a PCA of the video frames, and the state parameters are then learned by least

squares. This simple approximate learning algorithm tends to perform very well,

and is popular in computer vision.

II.C Binary Dynamic Systems

Motivated by the linear dynamic system (LDS), the binary dynamic sys-

tem (BDS), specified by parameter θ = {S,µ, A,C, Q,u}, models a sequence of

binary vectors y1:τ ∈ {0,1}D×τ by

{ xt+1 = Axt + vt, (II.4a)

yt|xt ∼ Bern(σ(Cxt + u)), (II.4b)
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where σ(θ) = (1 + e−θ)−1 is the sigmoid function (σ(θ) ≡ [σ(θ1), · · · ,σ(θK)]
ᵀ);

Bern(π) the multivariate Bernoulli distribution, i.e., y ∼ Bern(π) such that

p(y) = ∏d π
yd
d (1 − πd)

(1−yd); xt ∈ RL and u ∈ RD are the hidden state vari-

able and observation bias, respectively; A ∈ RL×L is the state transition ma-

trix; and C ∈ RD×L the observation matrix; the initial condition is given by

x1 = µ + v0 ∼ N (µ,S); and the state noise process is vt ∼ N (0, Q). For brevity,

we denote C̃ = [C,u] and x̃t = [xᵀt ,1]ᵀ. Alternatively, the observation model of

(II.4b) can be regarded as a binary principal component analysis (PCA) of [139]

with C as the principal components and xt being the coefficients, which evolve

according to the Markov-Gaussian process of (II.4a). This interpretation has

motivated a very efficient learning scheme consisting of a binary PCA and a

least-square estimation [97], which serves as a good initialization for other more

principled learning algorithms. The graphical model of the BDS is illustrated in

Fig. II.1.

Given the above definition of BDS, the distributions of the initial state,

conditional states, and conditional observations are

p(x1) = G(x1;µ0,S), (II.5)

p(xt+1|xt) = G(xt+1; Axt, Q), (II.6)

p(yt|xt) =
D

∏
d=1

σ(ωd,t)
ydt σ(−ωd,t)

(1−ydt), (II.7)

ωd,t = Cd,:xt + ud. (II.8)

The joint distribution of observation y1:τ and state x1:τ is

p(x1:τ,y1:τ;θ) = p(y1:τ|x1:τ)p(x1:τ) = p(x1)
τ−1

∏
t=1

p(xt+1|xt)
τ

∏
t=1

p(yt|xt). (II.9)
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Note that, although both the BDS shares the same graphical model as the conven-

tional LDS, the latter has a Gaussian state as the conjugate prior to its Gaussian

observation, which leads to exact and efficient inference by the Kalman smooth-

ing filter [146, 131], while Gaussian states and binary observations are entangled

in the BDS case. This complex form incurs a challenge that makes exact inference

of the state posterior intractable for the BDS. We will show that, however, the

problem can be well addressed by approximation schemes, e.g., variational infer-

ence [79] . This also inspires a parameter estimation framework that generalizes

the conventional expectation-maximization (EM) algorithm [35] for BDS learning

in Section V.A.

II.D Mixture Models for Binary Dynamic Systems

While a BDS can only encode one type of binary sequences, the mixture

of binary dynamic systems (mix-BDS) accounts for multiple evolution patterns in

binary vector sequence corpora. Under the mix-BDS, a binary vector sequence is

sampled from one of K BDS components. Specifically, given a prior probability

α = {α1, · · · ,αK} (αk > 0, ∑k αk = 1) of K components, a component indicator

variable z is first sampled from a categorical distribution parametrized by α as

z ∼ Cat(K,α). (II.10)

Then the binary vector sequence y1:τ ∈ {0,1}D×τ is drawn from the z-th BDS

component of the mixture model according to

 xt+1|xt,z = z ∼ N (Axt, Qz), (II.11a)

yt|xt,z = z ∼ Bern(σ(Czxt + uz)), (II.11b)
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where the z-th BDS component is parameterized by θz = {Sz,µz, Az,Cz, Qz,uz}
as defined in (II.4).

Under the definition of mix-BDS, the probability of a binary vector se-

quence y1:τ is

p(y1:τ) =
K

∑
z=1

p(z = z)p(y1:τ|z = z) =
K

∑
z=1

αz p(y1:τ|z = z), (II.12)

where p(y1:τ|z = z) is the probability of y1:τ under the z-th BDS component. Sim-

ilar to a single BDS, the conditional probabilities of the initial state, intermediate

states, and observations for the z-th BDS component are

p(x1|z) = G(x1;µ0,z,Sz), (II.13)

p(xt+1|xt,z) = G(xt+1; Azxt, Qz), (II.14)

p(yt|xt,z) =
D

∏
d=1

σ(ωd,t,z)
ydt σ(−ωd,t,z)

(1−ydt), (II.15)

ωd,t,z = Cz,d,:xt + ud,z, (II.16)

where notations follow those of (II.5) to (II.8) respectively. Following the conven-

tion in the literature of mixture models [35], an unit assignment vector z ∈ {0,1}K

is used for brevity such that zj = 1 if and only if z = j in (II.10). Using (II.13) to

(II.16), the joint probability of the complete data is

p(x1:τ,y1:τ,z;θ) = p(z)p(x1:τ|z)p(y1:τ|x1:τ,z) = p(z)
K

∏
j=1

[
p(x1:τ|j)p(y1:τ|x1:τ, j)

]zj
,

(II.17)

where the mixture model is specified by θ = {α,{θk}K
1 } with its graphical model

illustrated in Fig. II.2. Although the graph is moralized and triangulated, and its

junction tree resembles that of Fig. II.1 with z added to each clip [112, 23], exact
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x1 x2

y1 y2

xτ

yτ

z

Figure II.2: Graphical model for the mixture of binary dynamic systems.

inference for the mixture model is intractable due to the difficulty in that of its

BDS component. Nevertheless, using the paradigm in Section III.C, strategies for

posterior approximation and parameter estimation of the mixture model can be

derived as presented in Section III.D and Section V.A, respectively.
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In this chapter, we first review the variational inference framework, and

then the exact inference of the linear dynamic system via the Kalman smoothing

filter, before presenting the scheme to approximate the posterior of hidden states

in the binary dynamic system. The algorithms for inference of the mixture model

is derived in the end.

III.A Variational Inference

Assume that a probabilistic model p(Y;θ) of parameter θ contains an

observed variable Y and a hidden variable X. Let q(X) be a member from a

family of tractable distributions Dq. Variational inference [79] approximates the

posterior p(X|Y;θ) with q∗(X) ∈ Dq that is closest to p(X|Y;θ) in the KL sense,

such that

q∗(X) = arg min
q∈Dq

KL(q(X)||p(X|Y;θ)). (III.1)

Intuitively, if the posterior p(X|Y;θ) is tractable, i.e., p(X|Y;θ) ∈ Dq, the varia-

tional inference is exact as q∗(X) = p(X|Y;θ) in (III.1) since 1) KL divergence is

always non-negative, and 2) it vanishes if and only if p and q are identical [33]. It

is worth noting that, using (III.1) as the metric to minimize the dissimilarity to

the ground true posterior p(X|Y;θ), a unimodal approximate distribution q(X)

will most likely fit into only one mode of p(X|Y;θ) [12]. Thus care should be

taken when the multi-modality of p(X|Y;θ) is crucial in the problem of interest.

III.A.1 Variational Inference for One Hidden Variable

In the case of intractable posteriors, direct solution to problem (III.1) is

challenging in general. Alternatively, consider following decomposition of the
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log-evidence

ln p(Y;θ) = L (q;θ) + KL(q(X)||p(X|Y;θ))> L (q;θ), (III.2)

where

L (q;θ) =
∫

X
q(X) ln

p(Y, X;θ)
q(X)

dX = 〈ln p(X,Y;θ)〉q + Hq(X) (III.3)

is an evidence lower bound (ELBO) of log p(Y;θ) due to the non-negativeness

of the KL divergence; and the last equality of (III.2) holds if and only if q(X) =

p(X|Y;θ). Note that, since the log-evidence log p(Y;θ) is fixed for the given

model and observation, maximization of the lower bound L (q;θ) with respect

to q also minimizes KL(q(X)||p(X|Y;θ)):

q∗(X) = arg max
q∈Dq

L (q;θ) = arg min
q∈Dq

KL(q(X)||p(X|Y;θ)), (III.4)

which is often adopted to determine q∗(x) in practice. It could happen that

evaluation of L (q,θ) is impractical due to the complex form of p(Y, X;θ), e.g.,

binary dynamic systems. In such case, we resort to optimizing another tractable

lower bound L̃ such that L (q;θ)> L̃ (q;θ). Another critical observation on the

lower bound L (q;θ) is that, given the observed data, it can also be regarded

as a function of both the model p(Y, X;θ) and the variational distribution q.

This has been shown to play a fundamental role in the generalized expectation-

maximization algorithm [108], which is adopted in this work for parameter

estimation in Section V.A.
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III.A.2 Chain-rule of Variational Inference for Multiple Hid-

den Variables

If the model of interest contains more than one type of hidden variable,

there are typically two general strategies to handle this case: sequential and block

approaches [79]. Since the challenge in inference for binary dynamic systems

comes from the irregularity of distribution rather than the scale, we followed the

first strategy in this work. For this, we present an operational scheme, denoted

the chain rule of variational inference, to compute the joint variational distribution

of multiple hidden variables. Essentially, the scheme reduces the evaluation of

the joint posterior distribution into a series of local estimation sub-problems, and

solve them one by one. In each sub-problem, only one hidden variable is handled;

and analytic approximation is applied only when it is needed, depending on the

form of the distribution being considered, to guarantee a tight induced global

lower bound.

We start by considering a model with an observed variable Y and two

hidden variables X and Z 1. Using the same notations in Section III.A.1, the

lower bound of (III.3) becomes

L (q;θ) = 〈ln p(X,Y, Z;θ)〉qX,Z
+ Hq(X, Z) (III.5)

=
∫

z
q(z)

[∫
x

q(x|Z = z) ln p(x,Y,z;θ)dx + Hq(X|Z = z)
]

dz + Hq(Z)

(III.6)

=
∫

z
q(z)L (qX|z;θ,z)dz + Hq(Z), (III.7)

1For brevity, we only use two hidden variables for illustration. The idea, however, can be
easily adapted to groups of variables, e.g., both X and Z can contain multiple members such that
X = {Xi} and Z = {Zi}.
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where

L (qX|z;θ,z) =
∫

x
q(x|Z = z) ln p(x,Y,z;θ)dx + Hq(X|Z = z) (III.8)

is a lower bound of ln p(Y,z;θ), which is a function of q(X|Z = z); and (III.6)

results from (III.5) due to (II.2). Maximization of (III.7) gives

max
qX,Z

L (q;θ) = max
qX|Z,qZ

[∫
z

q(z)L (qX|z;θ,z)dz + Hq(Z)
]

(III.9)

= max
qZ

{∫
z

q(z)
[

max
qX|Z=z

L (qX|z;θ,z)
]
dz + Hq(Z)

}
(III.10)

= max
qZ

[∫
z

q(z) ln p∗(Y,z;θ)dz + Hq(Z)
]

, (III.11)

where

ln p∗(Y,z;θ) = max
qX|Z=z

L (qX|z;θ,z); (III.12)

and (III.10) holds since the coefficients for the expectation 〈·〉qZ
, which is a convex

combination, are non-negative. Similar to the problem of (III.4), if L (qX|z;θ,z) is

intractable, another manageable lower bound L̃ (qX|z;θ,z) is used instead. This

is where the approximation is applied for pX|Z, which only changes the form of

p(X|Z) but not necessarily that of p(Z). Intuitively, (III.10) factorizes the original

variational inference of (III.9) into two sub-problems: 1) the nested problem of

(III.12), which can be solved via single-variable variational inference as the prob-

lem of (III.4); and 2) the root problem of (III.11), which also can be solved the same

way as that of (III.4) once the conditional variational distribution in the nested

problem of (III.12) is determined. In the same fashion, schemes for models with

more than two types of hidden variables can be derived too, which compute the

conditional variational posteriors in the innermost-to-outermost direction. The
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Algorithm 1: Chain Rule of Variational Inference
Input: a probabilistic model p(Y, X1:nX ;θ), an observation y, a set of

tractable distributions Dq ;

i← 1;
ln p∗(y, xi+1:nX , xi;θ)← ln p(y, xi+1:nX , xi;θ);
for i := 1 to nX do

choose a tractable (with respect to xi) lower bound
ln p̃∗(y, xi, xi+1:nX ;θ) of the log-evidence ln p∗(y, xi, xi+1:nX ;θ) such
that

ln p∗(y, xi, xi+1:nX ;θ)> ln p̃∗(y, xi, xi+1:nX ;θ);

compute q∗Xi|Xi+1:nX
that optimizes L̃ (q(x);θ, xi+1:nX) by solving

ln p∗(y, xi+1:nX ;θ)← max
q(x)∈DqXi

L̃ (q(x);θ, xi+1:nX),

where
L̃ (q(x);θ, xi+1:nX) =

∫
q(x) ln p̃∗(y, x, xi+1:nX ;θ)dx + Hq(Xi);

i← i + 1;
end

Output : q(X1:nX) = ∏i q∗(Xi|Xi+1:nX)

procedure is summarized in Algorithm 1. To facilitate evaluation in practice, the

order to evaluate hidden variables can be derived by exploiting the topological

structure of the original graphical model, e.g., using the factorization properties

in Bayesian networks [133]. Note that, no assumption of independence is made

on any steps in the derivation above. Instead, the correlation in the original

model, which could be crucial, is preserved and encoded via the conditional

variational distribution in each sub-problem. On the other hand, the cost of the

chain rule is that, the complexity may quickly become prohibitive as the scale of

the problem increases, making it impractical or impossible to implement.

If full independence is assumed among each hidden variables of the
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variational distribution in Algorithm 1 such that

q({Xi}) = ∏i q(Xi), (III.13)

the procedure becomes another closely related and popular technique called

factorial approximation [12], or mean field approximation [163], which is inspired

by the mean field theory from the statistical mechanics literature [116]. The

representation is designed to efficiently depict the behavior of an enormous

stochastic models with a large number of random nodes that interact with each

other. In this case, the intractability typically stems from the combinatorial

configurations and the complex entanglement. To cope with these challenges, the

model is fully factorized into a field of independent variables; and the inter-node

interaction is approximated by an averaged effect or estimated mean (which

justifies its name). This leads to a manageable inference that can be solved

iteratively through gradient descent with convergence to local optimum [163].

While this scheme can handle problems at scale [120, 178, 137, 65, 170, 24, 135],

performance in other scenarios can be seriously affected as the oversimplified

assumption of full independence fails to capture some critical correlation [80,

61, 12]. For this reason, factorial approximation is less desirable than the chain

rule for inference in mixtures of binary dynamic systems, where the dependence

between mixture cluster assignments and state sequences plays a crucial role.

Nevertheless, both methods are not exclusive to each other. Actually, they can

work in a hybrid framework to complement each other for much more powerful

representation with both flexibility and tractability, e.g., using partial factorization

to reduce global complexity through removal of weak inter-group correlation,

while applying the finer modeling scheme to local substructure [136, 8, 171].
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III.B Inference for Linear Dynamic Systems

Before presenting the inference for the binary dynamic system and its

mixture version, we first brief review the inference for the linear dynamic system.

As we will see later, the inference of BDS can be solved efficiently with similar

message passing routine.

III.B.1 Solution to Inference of Linear Dynamic Systems

Consider the LDS of (II.3) with parameters θLDS = {S,µ, A,C, Q, R,u},
an observation sequence y1:τ (yt ∈ RD), and the variational distribution q(x)

of (III.36). The ELBO of (III.3) for the LDS is

L (q;θ,y) = 〈ln p(x1)〉q +
τ−1

∑
t=1
〈ln p(xt+1|xt)〉q +

τ

∑
t=1
〈ln p(yt|xt)〉q + Hq(X).

(III.14)

It can be shown that (see Appendix III.F.2), the optimal q∗ that maximizes (III.14)

is a Gaussian of the form

q(x1:τ) = G(x1:τ;m,Φ), m ∈RLτ×1, Φ ∈ SLτ
++, (III.15)

where m[i] ∈RL and Φ[i,j] ∈RL×L are the mean of xi and covariance between xi

and xj, respectively,

m[i] = 〈xi〉q , Φ[i,j] =
〈
(xi −m[i])(xj −m[j])

ᵀ
〉

q
.

Defining ỹt = yt − u,

L (q;θ,y) = 〈lnG(ỹt;Cxt, R)〉q(xt)
= 〈lnG(xt; ỹt, R)〉G(xt;Cm[t],CΦ[t,t]C

ᵀ) , (III.16)
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and, from (II.3b),

〈ln p(yt|xt)〉q ∝ −1
2

[
||ỹt − Cm[t]||2R + tr(R−1CΦ[t,t]C

ᵀ)
]
.

It follows that

L (q;θ,y) ∝− 1
2

{
||µ−m[1]||2S + tr(S−1Φ[1,1])

+
τ−1

∑
t=1

 xt

xt+1


ᵀAᵀQ−1A −AᵀQ−1

−Q−1A Q−1


 xt

xt+1


+

τ

∑
t=1

tr(R−1CΦ[t,t]C
ᵀ) +

τ

∑
t=1
||ỹt −m[t]||2R

}
+

1
2

ln |Φ| .

(III.17)

The optimization of (III.17) with respect to the variational distribution q

can be factorized into two optimization problems

{m∗,Φ∗} = arg max
{m,Φ}∈RLτ×SLτ

++

L (q;θ,y) =
{

arg max
m∈RLτ

L (q;θ,y),arg max
Φ∈SLτ

++

L (q;θ,y)
}

.

Consolidating the terms containing Φ,

Φ∗ = arg max
Φ

ln |Φ| − tr(WLDSΦ),

s.t. Φ ∈ SLτ
++,

(III.18)
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where

WLDS[i,j] =



AᵀQ−1A + S−1 + CᵀR−1C, i = j = 1,

AᵀQ−1A + Q−1 + CᵀR−1C, 1 < i = j < τ,

Q−1 + CᵀR−1C, i = j = τ,

−Q−1A, i = j + 1,

−AᵀQ−1, i = j− 1,

0, otherwise.

(III.19)

It can be shown that (see Appendix III.F.3), the solution to (III.18) is

Φ∗ = WLDS
−1. (III.20)

Similarly, we have

m∗ = W−1
LDSβ, β =


β[1]

...

β[τ]

 , β[t] =


S−1µ + CᵀR1

−1ũ1, t = 1,

CᵀRt
−1ũt, 1 < t 6 τ.

(III.21)

On the other hand, since all random variables x and y (as well as all

marginal or conditional distributions) of the LDS are Gaussian, the variational

inference is exact in the case of LDS, and

q∗(x) = p(x|y;θLDS) = G(x1:τ;m,Φ).

In the following section, we briefly review the Kalman smoothing filter [146, 131],

which efficiently computes the solution of (III.20) and (III.21).
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III.B.2 Kalman Smoothing Filter

The key step in the variational inference of Section III.B.1 is to determine

m[t] = 〈xt〉q ,

Φ[t,t] =
〈
(xt −m[t])(xt −m[t])

ᵀ
〉

q
,

Φ[t,t+1] =
〈
(xt −m[t])(xt+1 −m[t+1])

ᵀ
〉

q
.

In this appendix, we derive an efficient method for this computation, which

draws on the solution of the identical variational inference problem for the LDS

of (II.3).

Defining expectations conditioned on the observed sequence from time

t = 1 to t = r as

x̂r
t = 〈xt〉p(xt|y1,...,yr)

, (III.22)

V r
t,k =

〈
(xt − x̂r

t)(xk − x̂r
k)

ᵀ〉
p(xt,xk|y1,...,yr)

, (III.23)

the estimates are calculated via the forward and backward recursions:

• In the forward recursion, for t = 1, · · · ,τ, compute

V t−1
t,t = AV t−1

t−1,t−1Aᵀ + Q, (III.24)

Kt = V t−1
t Cᵀ(CV t−1

t,t Cᵀ + Rt)
−1, (III.25)

V t
t,t = V t−1

t,t − KtCV t−1
t,t , (III.26)

x̂t−1
t = Ax̂t−1

t−1, (III.27)

x̂t
t = x̂t−1

t + Kt(ỹt − Cx̂t−1
t ), (III.28)
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with initial conditions x̂0
1 = µ and V0

1,1 = S.

• In the backward recursion, for t = τ, · · · ,1,

Jt−1 = V t−1
t−1,t−1Aᵀ(V t−1

t,t )−1, (III.29)

x̂τ
t−1 = x̂t−1

t−1 + Jt−1(x̂τ
t − Ax̂t−1

t−1), (III.30)

V τ
t−1,t−1 = V t−1

t−1,t−1 + Jt−1(V
τ
t,t − V t−1

t,t )Jt−1
ᵀ, (III.31)

and for t = τ, · · · ,2,

V τ
t−1,t−2 = V t−1

t−1,t−1 Jt−2
ᵀ + Jt−1(V

τ
t,t−1 − AV t−1

t−1,t−1)Jt−2
ᵀ (III.32)

with initial condition V τ
τ,τ−1 = (I − KτC)AV τ−1

τ−1,τ−1.

The final result for the inference of LDS is

q∗(xt) = G(xt;m[t],Φ[t,t]) = G(xt; x̂τ
t , V̂ τ

t,t); (III.33)

and

q∗(xt, xt+1) = G


 xt

xt+1

 ;

 m[t]

m[t+1]

 ,

 Φ[t,t] Φ[t,t+1]

Φ[t+1,t] Φ[t+1,t+1]




= G


 xt

xt+1

 ;

 x̂τ
t

x̂τ
t+1

 ,

 V̂ τ
t,t V̂ τ

t,t+1

V̂ τ
t+1,t V̂ τ

t+1,t+1


 . (III.34)

The overall complexity is O(Lκτ), where κ ∈ [2.38,3] is the constant coeffi-

cient in the complexity of n× n matrix product O(nκ) [32], since the routine only

involves matrix manipulation for L× L matrices, and the number of operations

is linear in the length of the sequence (τ).
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III.C Inference of Hidden States in Binary Dynamic

Systems

To apply the variational method of Section III.A to inferring hidden state

in the BDS, we consider its complete-data log-evidence by taking the logarithm

of (II.9) (up to constants independent of all variables and the parameter):

ln p(x1:τ,y1:τ;θ) =

− 1
2

ln |S| −
(τ − 1

2

)
ln |Q| − 1

2
‖x1 − µ‖2

S −
1
2

τ−1

∑
t=1
‖xt+1 − Axt‖2

Q

+ ∑
t,d

[
ydt lnσ(Cd,:xt + ud) + (1− ydt) lnσ(−Cd,:xt − ud)

]
+ const.

(III.35)

The irregular form of the sigmoid non-linearity makes the posterior p(x1:τ|y1:τ)

intractable (note that p(x1:τ|y1:τ)∝ p(x1:τ,y1:τ)). It can be shown that, however,

the log-evidence of (III.35) is a concave function in x1:τ, thus the ground true pos-

terior p(x1:τ|y1:τ) is unimodal (see Appendix III.F.1 for discussion), which justifies

the appropriateness of variational methods in approximating p(x1:τ|y1:τ;θ). To

address the technical difficulty of the expectation of lnσ(·) in (III.3), two lower-

bounds are considered. These lead to two algorithms for inference and learning

of different complexities. For brevity, we denote the mean of the variational

distribution as m ∈ RLτ×1 (and m̃[t] = [m[t]
ᵀ,1]ᵀ.), the covariance as Φ ∈ SLτ

++,

the second order moment as P ∈ SLτ
++.
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III.C.1 Variational Inference with ELBOSJ

Consider a multivariate Gaussian distribution of full covariance for q(x),

q(x1:τ) = G(x1:τ;m,Φ), m ∈RLτ×1, Φ ∈ SLτ
++, (III.36)

where m[t] ∈RL and Φ[r,s] ∈RL×L are the mean of xt and covariance between xr

and xs, respectively,

m[t] = 〈xt〉q , Φ[r,s] =
〈
(xr −m[r])(xs −m[s])

ᵀ
〉

q
.

Since ω (a linear projection of x) is Gaussian, 〈lnσ(ω)〉q is bounded by

〈lnσ(ω)〉q > lnσ(〈ω〉q)−
1
8

var(ω), (III.37)

which results from setting ξ = 1/2 in (A.10) of [138]. This leads to a new lower

bound L̂SJ(θ,q) of (III.35)

L̂SJ(θ,q) =− 1
2

{
||µ−m[1]||2S + tr(S−1Φ[1,1]) +

1
4 ∑

t
tr(CΦ[t,t]C

ᵀ)

+
τ−1

∑
t=1

tr
(

Q−1(P̂t+1,t+1 − P̂t+1,t Aᵀ − AP̂t,t+1 + AP̂t,t Aᵀ))}
+ ∑

t,d

[
yd,t lnσ(ω̂d,t) + (1− yd,t) lnσ(−ω̂d,t)

]
+

1
2

ln |Φ|+ const,

(III.38)

where P̂r,s =
〈

xrxᵀs
〉

qi(x|j) = Φ[r,s] + m[r]m[s]
ᵀ and ω̂d,t = 〈ωd,t〉q = Cd,:m[t] + ud.
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The variational distribution q∗(x) is the solution of

{m∗,Φ∗} = arg max
{m,Φ}∈RLτ×SLτ

++

L̂SJ(θ,q). (III.39)

This is a convex optimization problem, since all terms of L̂SJ(θ,q), depend on either

Φ or m separately (not on both), have the convex domain (m,Φ) ∈RLτ × SLτ
++

and are concave - either a) linear functions, b) quadratic functions of negative

definite coefficient matrices, c) negative log-sum-exp functions, or d) log deter-

minant of Φ. Furthermore, (III.39) can be factorized into

{m∗,Φ∗} = arg max
{m,Φ}∈RLτ×SLτ

++

L̂SJ(θ,q) =
{

arg max
m∈RLτ

L̂SJ(θ,q),arg max
Φ∈SLτ

++

L̂SJ(θ,q)
}

.

Consolidating the terms containing Φ,

Φ∗ = arg max
Φ

ln |Φ| − tr(WSJΦ),

s.t. Φ ∈ SLτ
++,

(III.40)

where WSJ ∈ SLτ
++ is a positive-definite matrix such that

WSJ [i,j] =



AᵀQ−1A + S−1 + 1
4CᵀC, i = j = 1,

AᵀQ−1A + Q−1 + 1
4CᵀC, 1 < i = j < τ,

Q−1 + 1
4CᵀC, i = j = τ,

−Q−1A, i = j + 1,

−AᵀQ−1, i = j− 1,

0, otherwise.
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It can be shown that (see Appendix III.F.3), this has optimal solution

Φ∗ = WSJ
−1. (III.41)

While (III.41) is conceptually straightforward, the inversion of the matrix W−1
SJ

can be too expensive for long video sequences (large τ).

In most cases, nevertheless, only 1) the value of the ELBO , 2) the mean m,

and 3) state covariances at each time step and between two adjacent time steps,

Φ[t,t] and Φ[t,t+1], are needed, e.g., in model parameter estimation. Alternatively,

note that the structure of (III.41) resembles that of the LDS of (III.19), thus the

popular Kalman smoothing filter [131] can be adopted to compute the ELBO,

parameters Φ∗[t,t] and Φ∗[t,t+1], using the same routine in Section III.B.2 with

proper substitution of parameters.

The optimal variational mean parameter m∗ has no closed form solution,

due to the log-sigmoid terms of (III.38). We rely on a numerical procedure for

determining the stationary point of L̂SJ(θ,q∗) for m. Since the problem is convex,

this suffices to guarantee a global optimum. Specifically, the variational mean m

is the solution of

m∗ = arg max
m

L̂SJ(θ,q) (III.42)

= arg max
m

{
µᵀS−1m[1] −

1
2

mᵀ
[1]S
−1m[1] (III.43)

− 1
2

τ−1

∑
t=1

 m[t]

m[t+1]


ᵀAᵀQ−1A −AᵀQ−1

−Q−1A Q−1


 m[t]

m[t+1]


+ ∑

t,k

[
yd,t lnσ(ω̂d,t) + (1− yd,t) lnσ(−ω̂d,t)

]}
.



40

This can be rewritten as

m∗ = arg max
m

{
−mᵀW̃m + bᵀ1 m[1] −∑

t,k

[
yd,t ln(1 + exp(−Cd,:m[t] − ud))

+ (1− yd,t) ln(1 + exp(Cd,:m[t] + ud))
]}

, (III.44)

where

W̃ [i,j] =



AᵀQ−1A + S−1, i = j = 1,

AᵀQ−1A + Q−1, 1 < i = j < τ,

Q−1, i = j = τ,

−Q−1A, i = j + 1,

−AᵀQ−1, i = j− 1,

0, otherwise,

(III.45)

ω̂d,t = Cd,:m[t] + ud, and b1 = 2S−1µ. Since L̂SJ(θ,q) is a concave function of

m ∈ RτL, gradient-based methods can be applied to search for the stationary

point where global optimum is guaranteed.

The gradient of L̂ (θ,q) is

∂

∂m
L̂ (θ,q) = − W̃m +

b1

0

−


Cᵀ

. . .

Cᵀ




β1
...

βτ

 , (III.46)

where

βt = [σ(ω̂d,t)− y1t, · · · , σ(ω̂Dt)− yDt]
ᵀ;
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The second-order partial derivatives of L̂SJ(θ,q) is

∂2

∂m2 L̂SJ(θ,q) = −W̃ −


CᵀΞ1C

. . .

CᵀΞτC

 , (III.47)

where Ξt = diag(σ(ω̂1,t)σ(−ω̂1,t), · · · , σ(ω̂D,t)σ(−ω̂D,t), ). Given the concavity

and smoothness of L̂SJ(θ,q), many popular numerical optimization algorithms

can be utilized to search for its optimum, e.g., gradient descent, Newton-Raphson

method, Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, etc.

III.C.2 Variational Inference with ELBOJ J

Noting that (II.4b) can also be interpreted as the Bayesian logistic regres-

sion, we adopt the lower bound σ̃(x;ξ) of σ(·) in [66] such that

σ(x)> σ̃(x;ξ) = σ(ξ)exp
{
− λ(ξ)(x2 − ξ2) +

x− ξ

2

}
, λ(ξ) =

1
2ξ

[
σ(ξ)− 1

2

]
,

(III.48)

where ξ > 0 is the parameter that controls the shape of σ̃(x;ξ). This has been

shown to achieve good performance in Bayesian logistic regression [66, 67].

Combining (III.48) with (III.35) and substituting them into (III.3) leads to the
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variational lower bound (up to constants independent of q(x) and ξ)

L̃J J(q,ξ;θ) =
〈
− 1

2
(x1 − µ)ᵀS−1(x1 − µ)− 1

2

τ

∑
t=1

(Cxt − ũt)
ᵀR̃−1

t (Cxt − ũt)

− 1
2

τ−1

∑
t=1

 xt

xt+1


ᵀAᵀQ−1A −AᵀQ−1

−Q−1A Q−1


 xt

xt+1

〉
q(x)

+ ∑
t,d

ζ(ξd,t) + Hq(X) + const, (III.49)

where ξ ∈RD×τ
++ is the variational parameter,

R̃−1
t = 2diag{λ(ξ1,t), · · · ,λ(ξD,t)} � 0, ũt =

1
4

[2y1,t − 1
λ(ξ1,t)

, · · · , 2yD,t − 1
λ(ξD,t)

]ᵀ
− u,

(III.50)

and

ζ(ξ) = lnσ(ξ) + λ(ξ)ξ2 − 1
2

ξ +
1

16λ(ξ)
. (III.51)

The lower bound of (III.49) is a function of the variational distribution q

and the variational parameter ξ. Since both are entangled in a complex way, we

resort to coordinate descent to search the optimum. This inspires an optimization

scheme similar to the EM algorithm, which alternates between maximizing

L̃J J(q,ξ;θ) over q while fixing ξ and vice versa. The whole procedure of the

EM-style algorithm for BDS variational inference is summarized in Algorithm 2.

The rigorous bound of (III.49) leads to the significant improvement of

our method in accuracy over previous state-of-the-art GCLDS [49]. To see this

significance, the gap between two bounds and results of approximate inference

for a 1D example are illustrated in Fig. III.1.
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(a) Contour of the difference between two bounds.
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(b) Approximate distributions for posterior p(x|y = 1).

Figure III.1: Comparison of variational bounds and approximate distributions.
Top: contour of the difference b1(µ,ρ2)− b2(µ,ρ2) between two lower bounds
of 〈lnσ(x)〉p(x) , x ∼ N (µ,ρ2) for different (µ,ρ2); b1(µ,ρ2) = lnσ(

√
µ2 + ρ2) +

(µ−
√

µ2 + ρ2)/2 is our bound for BDS, b2(µ,ρ2) = µ + lnσ(−µ− ρ2/2) the
bound for GCLDS. Bottom: approximate inference results in 1D case for p(x|y =
1) with prior x ∼ N (0,1) and conditional probability p(y|x) = Bern(σ(6x −
2)); KL divergence to p(x|y = 1) (black) is shown in parentheses for Laplace
approximation (blue), GCLDS (green), and our method (red). Best viewed in
color.
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E-step

In this step, (III.49) is optimized over q given ξ fixed. After dropping

terms that do not depend on q in (III.49), we have

q∗ = arg max
q(x)∈Dq

〈
− 1

2
(x1 − µ)ᵀS−1(x1 − µ)− 1

2

τ

∑
t=1

(Cxt − ũt)
ᵀR̃−1

t (Cxt − ũt)

− 1
2

τ−1

∑
t=1

 xt

xt+1


ᵀAᵀQ−1A −AᵀQ−1

−Q−1A Q−1


 xt

xt+1

〉
q(x)

+ Hq(X).

(III.52)

Since all terms subject to the expectation are quadratic or linear functions in x, it

can be shown that (see Appendix III.F.2 for details), the solution to (III.52) is a

Gaussian distribution

q∗(x1:τ) = G(x1:τ;m,Φ), m ∈RLτ×1, Φ ∈ SLτ
++, (III.53)

where

Φ = W−1
J J (III.54)
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with W J J ∈ SLτ
++ defined by

W J J [r,s] =



AᵀQ−1A + S−1 + CᵀR̃−1
1 C, r = s = 1,

AᵀQ−1A + Q−1 + CᵀR̃−1
r C, 1 < r = s < τ,

Q−1 + CᵀR̃−1
τ C, r = s = τ,

−Q−1A, r = s + 1,

− AᵀQ−1, r = s− 1,

0, otherwise;

(III.55)

and

m = W−1
J J β, β =


β[1]

...

β[τ]

 , β[t] =


S−1µ + CᵀR̃−1

1 ũ1, t = 1,

CᵀR̃−1
t ũt, 1 < t 6 τ.

(III.56)

Although both (III.54) and (III.56) are conceptually straightforward to compute,

inversion of W J J can be computationally expensive for a very long sequence (e.g.,

τ is large), at a complexity around O(Lκτκ).

In many scenarios, however, only 1) the value of L̃J J(q,ξ;θ) in (III.49)

(the lower-bound of the data log-evidence), 2) the mean m, and 3) the covari-

ance of states at each time step and between two adjacent time steps, Φ[t,t]

and Φ[t,t+1], are needed, e.g., in model parameter estimation. Thus, these crit-

ical results can be efficiently computed by an efficient solution that is derived

from the popular Kalman smoothing filter (KSF) with a complexity of O(Lκτ)

[131], with similar routine in Section III.B.2 with proper parameter substitu-

tion. For convenience, we define the Kalman filtering as a mapping from y(i) to
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{L̃J J(q∗,ξ;θ),m(i,j),{Φ(i,j)
[t,t] },{Φ

(i,j)
[t,t+1]}} given ξ and θ as parameters:

{L̃J J(q∗,ξ;θ),m(i,j),{Φ(i,j)
[t,t] },{Φ

(i,j)
[t,t+1]}} = KSF(y(i);ξ,θ). (III.57)

M-step

In this step, (III.49) is optimized over ξ given q(x;m,Φ) fixed. After

dropping terms that do not depend on ξ in (III.49), we have

ξ∗ = arg max
ξ∈RD×τ

++

∑
t,d

lnσ(ξd,t) + λ(ξd,t)(ξ
2
d,t −

〈
ω2

d,t

〉
q
)− ξd,t

2
, (III.58)

where
〈
ω2

dt
〉

q = (C̃ j,d,:m[t] + ud)
2 + C̃ j,d,:Φ[t,t]C̃ j,d,:

ᵀ. (III.58) can be solved by opti-

mization over each ξd,t individually, which yields the solution

ξ∗d,t =
〈

ω2
dt

〉 1
2

q
=
[(

C̃ j,d,:m[t] + ud
)2

+ C̃ j,d,:Φ[t,t]C̃ j,d,:
ᵀ
] 1

2
. (III.59)

See Appendix III.F.4 for derivations.

Since each M-step requires O(L2Dτ) operations, the total complexity of

our inference algorithm is O((DL2 + Lκ)τ) 2. Note that, while it is possible to

plug (III.59) into (III.49) to derive a gradient descent algorithm for optimizing

the ELBO, this will nullify the elegant Markovian structure of (III.49) and result

in a complex non-linear objective function, whose expensive gradient needs

to be evaluated frequently, as in the case of GCLDS. In contrast, our EM-like

inference routine only requires very efficient closed-form update rules, achieving

a tremendous boost in speed over GCLDS.

2 More precisely, there is another factor nEM in the complexity, i.e., O((DL2 + Lκ)τnEM),
where nEM is the average number of EM iterations. Nevertheless, it is still fair to consider nEM
as a constant since our EM algorithm for inference always converges after several iterations
regardless of the value of D, L, and τ.
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Algorithm 2: Variational Inference of BDS (VarInfBDS) with ELBOJ J
via Coordinate Descent

Input: a binary vector sequence y1:τ, a BDS parameter θ, initial
variational parameter ξ;

n← 0, ξ(0)← ξ;
repeat

(VE-step): update the variational distribution q(x;m,Φ) by

{L̃ ,m(n+1),{Φ(n)
[t,t]},{Φ

(n)
[t,t+1]}} ← KSF(y1:τ;ξ(n),θ),

where KSF(·; ·, ·) is the Kalman smoothing filter of (III.57).
(VM-step):
for d := 1 to D do

for t := 1 to τ do
update ξd,t according to

ξ
(n+1)
d,t ←

[(
C̃ j,d,:m

(n+1)
[t] + ud

)2
+ C̃ j,d,:Φ

(n+1)
[t,t] C̃ j,d,:

ᵀ
] 1

2
;

end
end
n← n + 1;

until convergence;

Output : L̃ , m(n), {Φ(n)
[t,t]}, {Φ

(n)
[t,t+1]}, ξ(n).
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III.D Inference for Mixture of Binary Dynamic Sys-

tems

To capture the full dependence between the indicator and hidden state

sequence, a mixture model is assumed for the variational distribution q(x1:τ,z)

as

q(x1:τ,z) = q(x1:τ|z)q(z) =
K

∏
j=1

[
q(x1:τ|zj = 1)q(zj = 1)

]zj
, (III.60)

where

q(z = j) = q(zj = 1) = q(j) = γj, (III.61)

q(x1:τ|zj = 1) = q(x1:τ|j) ∈ Dq(x|z), (III.62)

with q(z;γ)∈Dq(z) = {{q(z= j) = γj}K
j=1|∑j γj = 1,γj > 0} andDq(x|z) = {q(x)|q(x)>

0,
∫

q(x)dx = 1}. Note that, in the variational model above, both the indicator z

and the state sequence x1:τ are subject to free-form distributions over their support:

z is sampled from an arbitrary categorical distribution Cat(K,γ) over integer set

{1, · · · ,K}; and x1:τ, conditional on z, is sampled from an arbitrary distribution

over RL.

Given the mixture model parameter θ = {α,{Sj,µj, Aj,C j, Qj,uj}K
j=1}, con-

sider the following lower-bound L (q;θ) for an observed sequence y, by applying

the chain rule of variational inference in Section III.A.2 with q(x1:τ,z) of (III.60)

L (q;θ) = ∑j q(j)L (qx|z;θ, j) + Hq(Z), (III.63)
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where

L (qx|z;θ, j) =
∫

x
q(x|j) ln p(x,y, j;θ)dx + Hq(X|Z = j). (III.64)

Plugging the complete-data log-evidence of (II.17) for the mixture model (up to

scalar constants)

lnp(x1:τ,y1:τ, j;θ) =

lnαj −
1
2

ln
∣∣Sj
∣∣− (τ − 1

2

)
ln
∣∣∣Qj

∣∣∣− 1
2

∥∥∥x1 − µ0,j

∥∥∥2

Sj
− 1

2

τ−1

∑
t=1

∥∥xt+1 − Ajxt
∥∥2

Qj

+ ∑
t,d

[
ydt lnσ(C j,d,:xt + uj,d) + (1− ydt) lnσ(−C j,d,:xt − uj,d)

]
+ const

(III.65)

into (III.64), and following (III.9) to (III.11), yield two sets of optimization prob-

lems to determine the optimal variational distribution q∗(x1:τ,z) = q∗(x1:τ|z)q∗(z).
The first set consists of K nested problems (as discussed in Section III.A.2)

q∗(x1:τ|j) = arg max
q∈Dq(x|z)

L (q;θ, j), j = 1, · · · ,K. (III.66)

This is the inference of Section III.C, thus it can be solved with the identical

algorithm there, which gives the result

q∗(x1:τ|j) = arg max
q∈Dq(x|z)

L̃ (q;θ, j) = G(x1:τ;m[j],Φj), (III.67)

and

ln p∗(y1:τ, j;θ) = L̃ (q∗(x1:τ|j);θ, j) = lnαj + ln p∗(y1:τ|j;θj), (III.68)
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where ln p∗(y1:τ|j;θj) is the lower bound to the conditional log-evidence ln p(y1:τ|j;θj),

which is identical to L̂SJ(θ,q) of (III.38) in Section III.C.1, or L̃J J(q∗,ξ∗;θj) of

(III.49) in Section III.C.2.

The second problem is the root problem of (III.11)

max
q(z;γ)∈Dq(z)

∑j γj ln p∗(y1:τ, j;θ)−∑j γj lnγj, (III.69)

by using the result of (III.68) from the nested problems of (III.66). It can be shown

that, solution to (III.69) is given by (see Appendix III.F.5 for details)

γ∗j =
p∗(y1:τ, j;θ)

∑K
k=1 p∗(y1:τ,k;θ)

=
αj p∗(y1:τ|j;θj)

∑K
k=1 αk p∗(y1:τ|k;θj)

. (III.70)

It is worth noting that, (III.70) resembles the form of posterior of cluster assign-

ment in a mixture model (e.g., a regular Gaussian mixture). The difference is that

(III.70) uses a lower-bound of the cluster-conditional data evidence p∗(y1:τ|j;θ)
instead of the ground truth p(y1:τ|j;θ) (which is intractable in our case). If the

inference of cluster-conditional data evidence is exact in (III.66), the posterior of

the cluster assignment estimated in (III.70) is also exact.
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with Mixtures of Binary Dynamic Systems,” under review at Journal of Machine

Learning Research (JMLR). The dissertation author was a primary researcher and

an author of the cited material.

III.F Appendix

III.F.1 Unimodality of the State Posterior of the BDS

By rewriting the complete data log-evidence of (III.35) as a function of x,

the log-posterior is of the form (up to constants independent of x)

ln p(x1:τ|y1:τ;θ) =

− 1
2
(x1 − µ)ᵀS−1(x1 − µ)− 1

2

τ−1

∑
t=1

(xt+1 − Axt)
ᵀQ−1(xt+1 − Axt)

−∑
t,d

{
ydt ln[1 + exp(−C̃ j,d,:xt − ud)] + (1− ydt) ln[1 + exp(C̃ j,d,:xt + ud)]

}
+ const.

Note that, (III.71) is strictly concave in x ∈ RLτ since all terms are (with x as

arguments subject to linear transformations) either 1) quadratic functions of

negative definite coefficient matrices; or 2) negative log-sum-exp functions [16].
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To see this, the second-order partial derivative of ln p(x|y;θ) is

∂2

∂x2 ln p(x|y;θ) = −W◦ −


CᵀΥ1C

. . .

CᵀΥτC

 , (III.71)

where W◦ ∈ SLτ
++ is defined by

W◦
[r,s] =



AᵀQ−1A + S−1, r = s = 1,

AᵀQ−1A + Q−1, 1 < r = s < τ,

Q−1, r = s = τ,

−Q−1A, r = s + 1,

− AᵀQ−1, r = s− 1,

0, otherwise;

and

Υt = diag(σ(ω1,t)σ(−ω1,t), · · · , σ(ωD,t)σ(−ωD,t)) ∈ SD
++.

The Hessian of ln p(x|y;θ) is negative-definite because 1) W◦ ∈ SLτ
++ is positive-

definite; and 2) the second matrix in (III.71) is positive-semidefinite. Hence,

ln p(x|y;θ) is strictly concave.

On the other hand, p(∞|y;θ) = 0 since 1) p(x|y;θ) is smooth in x ∈RLτ,

and 2)
∫

p(x|y;θ)dx = 1. Thus there exists a closed and bounded set X ⊂RLτ such

that p(x1|y;θ) > p(x2|y;θ),∀x1 ∈ ∂X , x2 ∈RLτ \ X . By extreme value theorem,

p(x1|y;θ) (and ln p(x1|y;θ)) must achieve a maximum at x∗ ∈ X .
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Altogether, we have

x∗ = arg max
x∈RLτ

p(x|y;θ) = arg max
x∈RLτ

ln p(x|y;θ) 6= ∞. (III.72)

It follows that there is a global maximum at x∗ 6= ∞ for the concave function of

ln p(x1:τ|y1:τ;θ). Therefore, p(x1:τ|y1:τ;θ) is a unimodal distribution peaking at

x∗.

III.F.2 Optimal Variational Distribution for Dynamic Systems

The optimization problem of (III.14) or (III.52) is of the general form

max
q

F[q] (III.73)

s.t. F[q] =
∫

x
q(x)[g(x)− lnq(x)]dx,

q(x) ∈ Dq,

where F[q] is a functional of q; Dq = {q(x)|q(x)> 0,
∫

q(x)dx = 1, x ∈Rn} is the

set of all PDFs defined on Rn; and

g(x) = −1
2

xᵀWx + bᵀx + c, W ∈ Sn
++,b ∈Rn, c ∈R (III.74)

is a strictly concave quadratic function in x ∈Rn. Note that, problem of (III.73) is a

convex problem as 1)the objective function F[q] is concave in q, and 2) the domain

Dq is a convex set. Using the method of Lagrange multipliers, the constraint

problem of (III.73) can be converted to an unconstraint one

max
{q(x),ν(x),λ}

∫
x

q(x)[g(x)− lnq(x)]dx+
∫

x
ν(x)q(x)dx+λ(

∫
x

q(x)dx− 1), (III.75)
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where ν(x) > 0,∀x ∈ Rn and λ ∈ R are the multipliers. By calculus of varia-

tions [134] and Karush-Kuhn-Tucker (KKT) conditions [16], the sufficient and

necessary conditions for the optimal point {q∗(x),ν∗(x),λ∗} are

g(x)− lnq∗(x)− 1 + ν∗(x) + λ∗ = 0, ∀x ∈Rn, (stationarity)

(III.76)∫
x

q∗(x)dx = 1, (primal feasibility)

(III.77)

q∗(x)> 0, ∀x ∈Rn, (primal feasibility)

(III.78)

ν∗(x)> 0, ∀x ∈Rn, (dual feasibility)

(III.79)

ν∗(x)q∗(x) = 0, ∀x ∈Rn. (complementary slackness)

(III.80)

From (III.76), it follows that

q∗(x) > 0, ∀x ∈Rn. (III.81)

Combining (III.81), (III.79) and (III.80) leads to

ν∗(x) = 0, ∀x ∈Rn. (III.82)

Substituting (III.82) into (III.76), and noting that q∗(x) is a PDF by definition, we

have

q∗(x)∝ exp(g(x)) = exp(−1
2

xᵀWx + bᵀx). (III.83)
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It is now clear that q∗(x) is a Gaussian distribution of the form

q∗(x) = G(x;W−1b,W−1). (III.84)

Reorganizing terms of (III.52) into the form of (III.73) gives the result of (III.53)

by (III.84).

III.F.3 Solution to Covariance of the Variational Distribution

We study an optimization problem of general form for brevity, before

deriving the solution to problems in the maintext.

The general optimization problem is

max
X∈S++

b ln |X| − tr(AX), s.t. A ∈ S++, b > 0. (III.85)

Since 1) both b ln |X| and −tr(AX) are smooth and concave functions in X, and

2) the domain S++ is a convex set, the maximum of problem (III.85) is achieved

at either 1) its stationary point(s) (if there is any), or 2) the boundary of its domain

(could be at infinity) [16].

The derivative of the objective function in the problem of (III.85) is

∂

∂X
{

b ln |X| − tr(AX)
}
= bX−ᵀ − A. (III.86)

Setting (III.86) to zero leads to

X∗ = bA−1 ∈ S++, (III.87)

which achieves the global maximum for the problem of (III.85).
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The solution to problem (III.18) and (III.41) can be derived by setting b = 1

and A to WLDS or WSJ , respectively.

III.F.4 Update Rules in the M-step for Variational Inference

The general form of the objective function in (III.58) is (with a ∈R as the

parameter)

f (ξ) = lnσ(ξ) +
1

2ξ
(σ(ξ)− 1

2
)(ξ2 − a2)− ξ

2
, ξ > 0. (III.88)

The first-order derivative of (III.88) is

f ′(ξ) =
1
2

( a2

ξ2 − 1
)[

σ(ξ)− 1
2
− ξσ(ξ)σ(−ξ)

]
, ξ > 0. (III.89)

Since

σ(ξ)− 1
2
− ξσ(ξ)σ(−ξ) =

1− e−2ξ − 2ξe−ξ

2(1 + e−ξ)
=

e−ξ(eξ − e−ξ − 2ξ)

2(1 + e−ξ)
> 0, ∀ξ > 0,

(III.90)

we have

f ′(ξ) > 0, ∀ξ ∈ (0, |a|), (III.91)

f ′(ξ) = 0, ξ = |a|, (III.92)

f ′(ξ) < 0, ∀ξ ∈ (|a|,+∞), (III.93)

and

ξ∗ = arg maxξ f (ξ) =
√

a2 = |a|. (III.94)

Setting a2 =
〈

ω2
d,t

〉
q

in (III.88) gives the result of (III.59) by (III.94).
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III.F.5 Inference of the Cluster Assignments in the Mixture Model

Problem (III.69) is of the form

max
γ

∑j γj
(

ln β j − lnγj
)
, (III.95)

s.t. γ � 0, 1ᵀγ = 1,

where 1 = [1, · · · ,1]ᵀ ∈ RK and β j > 0 are the parameter. Note that, prob-

lem (III.95) is a convex problem because 1) the objective function of problem (III.95)

is a concave function in γ since

∂2

∂γ2 ∑j γj
(

ln β j − lnγj
)
= −diag(

1
γ1

, · · · , 1
γK

) ∈ S−−,∀γ � 0

where S−− is the set of negative-definite matrices, and 2) its domain is a convex

set (more precisely, a standard (K− 1)-simplex).

By introducing Lagrange multipliers λ ∈ R and ν � 0, the constraint

problem of(III.95) is converted to an unconstraint one:

max
γ,λ,ν

∑j γj(ln β j − lnγj) + νᵀγ + λ(1ᵀγ− 1). (III.96)

According to Karush-Kuhn-Tucker conditions, at the optimal point {γ∗,λ∗,ν∗},
we have

∀j, ln β j − lnγ∗j − 1 + ν∗j + λ∗ = 0, (III.97)

∑j γ∗j = 1, (III.98)

∀j, νj
∗γ∗j = 0. (III.99)
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It is obvious that γ∗ � 0, thus

ν∗ = 0. (III.100)

Combining (III.97), (III.98) and (III.100) leads to solution

γ∗j =
β j

∑k βk
. (III.101)

Finally, substituting β j = p̃∗(y1:τ, j;θ) of (III.68) into (III.95) gives the result of

(III.70).



Chapter IV

Parameter Estimation for Dynamic

Systems

59
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IV.A Parameter Estimation via Suboptimal Procedures

IV.A.1 Binary Principal Component Analysis

Binary PCA [139] is a dimensionality reduction technique for binary data,

which belongs to the generalized exponential family PCA [31]. It fits a linear

model to binary observations, by embedding the natural parameters of Bernoulli

distributions in a low-dimensional subspace. Let Y denote a K × τ binary

matrix (ykt ∈ {0,1}, e.g., the indicator of occurrence of attribute k at time t) where

each column is a vector of K binary observations sampled from a multivariate

Bernoulli distribution

Ykt ∼ B(ykt;πkt) = π
ykt
kt (1− πkt)

1−ykt = σ(θkt)
ykt σ(−θkt)

1−ykt (IV.1)

of natural parameters θkt = log( πkt
1−πkt

). Binary PCA finds a L-dimensional (L�K)

embedding of the natural parameters, by maximizing the log-likelihood of the

binary matrix Y

L = ln p({ykt};Θ) = ∑
k,t

[
ykt lnσ(Θkt) + (1− ykt) lnσ(−Θkt)

]
(IV.2)

under the constraint

Θ = CX + u1ᵀ, (IV.3)

where C ∈ RK×L, X ∈ RL×τ, u ∈ RK and 1 ∈ Rτ is the vector of all ones. Each

column of C is a basis vector of a latent subspace and the t-th column of X

contains the coordinates of the t-th binary vector in this basis (up to a translation

by u).
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Algorithm 3: Sub-optimal Algorithm for Learning BDS

Input : a set of n sequences of attribute score vectors {y(i)
1:τi
}n

i=1, state
space dimension L.

Binary PCA [139]:

{C, X,u} = B-PCA({y(i)
1:τi
}n

i=1, L);

Assemble state sequences (X t1:t2 ≡
[
xt1 , · · · , xt2

]
):

X̂τ
2 =

[
X(1)

2:τ1
, · · · , X(n)

2:τn

]
, X̂τ−1

1 =
[
X(1)

1:τ1−1, · · · , X(n)
1:τn−1

]
;

Estimate state palrameters:

A = X̂τ
2(X̂τ−1

1 )
†
, V = X̂τ

2 − AX̂τ−1
1 , Q =

1
∑i(τi − 1)

V(V)ᵀ,

µ =
1
n

n

∑
i=1

x(i)1 , S =
1

n− 1

n

∑
i=1

(x(i)1 − µ)(x(i)1 − µ)ᵀ.

Output : Ω = {A,C, Q,u,µ,S}

IV.A.2 Learning Binary Dynamic Systems via Sub-optimal Al-

gorithm

The discussion above suggests a generalization of the DT learning pro-

cedure to the BDS. The binary PCA basis is learned first, by maximizing the

expected log-likelihood of (IV.2) subject to the constraint of (IV.3). Since the

Bernoulli is a member of exponential family, (IV.2) is concave in Θ, but not

in C, X and u jointly. The ML parameters can be found with the procedure

of [139], which iterates between the optimization with respect to one of the

variables C, X and u as the other two are held constant. Each iteration is a

convex sub-problem that can be solved efficiently with a fixed-point auxiliary

function [139].
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Once the optimal embedding C∗, X∗ and u∗ of the attribute sequence is

recovered, the remaining parameters are estimated by solving a least-squares

problem for A and Q, and using ML estimates for the Gaussian parameters of the

initial condition (µ and S). Since this is identical to the least squares procedure

of [39], we omit the details. The learning procedure, including the least squares

equations, is summarized in Algorithm 3. Since the optimal solution maximizes

the most natural measure of similarity (KL divergence) between probability

distributions, this extension is conceptually equivalent to the procedure used

to learn the LDS, which finds the subspace that best fits the observations in the

Euclidean sense, the natural similarity measure for Gaussian data. This is unlike

previous extensions of the LDS, e.g., kernel dynamic systems (KDS) that rely on

a non-linear kernel PCA (KPCA) [141] of the observation space but still assume

an Euclidean measure (Gaussian noise) [22, 28].

IV.B Parameter Estimation for Mixtures of Binary Dy-

namic Systems via Maximum Likelihood Esti-

mation

In this section, we review the maximum likelihood estimation (MLE) for

models with hidden variables yet intractable posteriors. Since the BDS con-

tains hidden variables yet the posterior is intractable, we rely on the scheme

of variational expectation maximization (VEM) [108, 79], which generalizes the

conventional expectation-maximization (EM) [35] algorithm by optimizing a lower

bound of the log-likelihood via coordinate descent. Then, in Section IV.C and

Section IV.D, we present algorithms to learn the mixture of binary dynamic
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systems via the VEM algorithm.

Consider the same model p(Y;θ) with hidden variable X in Section III.A

again. In MLE, given training data Ty, the parameter is estimated by maximizing

the log-likelihood:

θMLE = arg max
θ

L(θ;Ty) = arg max
θ

p(Ty;θ). (IV.4)

Since evaluation of the log-likelihood for the model p(Y;θ) is difficult, its varia-

tional lower-bound L (q,θ) of (III.2) is maximized instead:

L(θ;Ty)> L (q,θ) =
∫
Tx

q(Tx) ln
p(Ty,Tx;θ)

q(Tx)
dTx =

〈
ln p(Tx,Ty;θ)

〉
q + H[q(Tx)],

(IV.5)

where Tx is the (unobserved) training data of hidden variable X. Note that, here

L (q,θ) is a function of both the model parameter θ and variational distribution

q. This suggests a coordinate descent algorithm that alternates between opti-

mizing the variational distribution (expectation step) and the optimal parameter

(maximization step):

E(xpectation)-step: Optimize L (q,θ) over q with θ fixed such that

q∗= arg max
q

L (q,θ) = arg max
q

〈
ln p(Tx,Ty;θ)

〉
q +H[q(Tx)].

(IV.6)

M(aximization)-step: Optimize L (q,θ) over θ with q fixed such that

θ∗ = arg max
θ

L (q,θ) = arg max
θ

〈
ln p(Tx,Ty;θ)

〉
q .

(IV.7)

The algorithm is summarized in Algorithm 4. The E-step determines the optimal
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Algorithm 4: Maximize L (q,θ) via variational EM

Input: initial value of θ(0);

n← 0;
repeat

(VE-step): increase L (θ(n),q(n)) by solving

q(n+1)(x) = arg maxq∈Dq
L (θ(n),q); (IV.8)

(VM-step): increase L (θ(n),q(n+1)) by solving

θ(n+1) = arg maxθ∈Dθ
L (q,θ(n+1)); (IV.9)

n← n + 1;
until convergence;

Output : θ(n)

variational distribution given the current estimate of the parameter, and then

computes the expectation in (IV.5), which justifies its name; while the M-step

optimizes the expected complete data log-likelihood given the current estimate

of the variational distribution. If the optimal variational distribution in (IV.8)

is identical to the ground true posterior of p(Tx|Ty;θ), Algorithm 4 reduces to

the conventional EM algorithm [35]. Despite the limitation that the algorithm

cannot guarantee convergence to a (local) maximum of the data log-evidence

if the posterior is approximately inferred [54], it has been shown to achieve

satisfactory performance in practice when given a tight lower bound, as is the

case of mixtures of binary dynamic systems (see Section VI.E for details).
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IV.C Variational EM for Mixtures of Binary Dynamic

Systems using ELBOSJ

Given an independent and identically distributed (i.i.d.) N-example train-

ing set Ty = {y(i)}N
i=1, the parameter θ = {α,{Sj,µj, Aj,C j, Qj,uj}K

j=1} of a K-

component mixture of binary dynamic systems is estimated via the MLE frame-

work of Section IV.B (which reduces to a single BDS learning when K = 1).

Using the same assumption of (III.60), the variational distribution q(Tx,Tz) of

the hidden states Tx = {x(i)}N
i=1 and assignment vectors Tz = {z(i)}N

i=1 is

q(Tx,Tz) =
N

∏
i=1

qi(x(i),z(i)) =
N

∏
i=1

K

∏
j=1

[
qi(x(i)|j)qi(j)

]z(i)j
, (IV.10)

where z(i) ∼ Cat(K,γ(i)) and qi(x|j) ∈ Dq(x|z) = {q(x)|q(x) > 0,
∫

q(x)dx = 1}.
According to (II.17), the complete-data log-evidence is (up to scalar constants)

lnp(Tx,Tz,Ty;θ) =

∑
i,j

z(i)j lnαj −
1
2 ∑

i,j
z(i)j ln

∣∣Sj
∣∣− 1

2 ∑
i,j

z(i)j (τi − 1) ln
∣∣∣Qj

∣∣∣
− 1

2 ∑
i,j

z(i)j tr
[
S−1

j
(
P(i)

1,1 − x(i)1 µᵀ
j − µjx

(i)ᵀ
1 + µjµ

ᵀ
j
)]

− 1
2 ∑

i
z(i)j

τi−1

∑
t=1

tr
[

Q−1
j
(
P(i)

t+1,t+1 − P(i)
t+1,t Aᵀ

j − AjP
(i)ᵀ
t+1,t + AjP

(i)
t,t Aᵀ

j
)]

+ ∑
i,j

z(i)j

τi

∑
t=1

∑
d

[
y(i)dt lnσ(ω

(i)
d,t) + (1− y(i)dt ) lnσ(−ω

(i)
d,t)
]
+ const, (IV.11)

where P(i)
r,s = x(i)r x(i)ᵀs and ω

(i)
d,t = C j,d,:x

(i)
t + uj,d.

Substituting (IV.11) into (III.63), using the ELBO in (III.C.1), and following

the same derivation in Section III.D, yields the objective function to optimize in
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VEM of Algorithm 4:

L̃ SJ(q(Tx,Tz),θ) =

∑
i,j

γ
(i)
j lnαj −

1
2 ∑

i,j
γ
(i)
j ln

∣∣Sj
∣∣− 1

2 ∑
i,j

γ
(i)
j (τi − 1) ln

∣∣∣Qj

∣∣∣
− 1

2 ∑
i,j

γ
(i)
j tr

[
S−1

j
(
P̂(i)

1,1|j −m(i,j)
[1] µᵀ

j − µjm
(i,j)
[1]

ᵀ
+ µjµ

ᵀ
j
)]

− 1
2 ∑

i,j
γ
(i)
j

τi−1

∑
t=1

tr
[

Q−1
j
(
P̂(i)

t+1,t+1|j − P̂(i)
t+1,t|j A

ᵀ
j − AjP̂

(i)ᵀ
t+1,t|j + AjP̂

(i)
t,t|j A

ᵀ
j
)]

+ ∑
i,j,d

γ
(i)
j

τi

∑
t=1

[
y(i)dt lnσ(C̃ j,d,:m̃

(i,j)
[t] ) + (1− y(i)dt ) lnσ(−C̃ j,d,:m̃

(i,j)
[t] )

]
− 1

8 ∑
i,j

γ
(i)
j

τi

∑
t=1

tr(C jΦ
(i,j)
[t,t] C

ᵀ
j ) + ∑

i,j
γ
(i)
j H[(qi(X|j)]−∑

i,j
γ
(i)
j lnγ

(i)
j , (IV.12)

where P̂(i)
r,s|j =

〈
xrxᵀs

〉
qi(x|j) =Φ

(i,j)
[r,s] +m(i,j)

[r] m(i,j)
[s]

ᵀ
, C̃ j = [C j,uj], and m̃(i,j)

[t] = [m(i,j)
[t]

ᵀ
, 1]ᵀ.

IV.C.1 E-step

In the E-step, given the current estimate of the model parameter θ =

{α,{Sj,µj, Aj,C j, Qj,uj}K
j=1}, the variational distribution q is updated by maxi-

mizing (IV.12) over q:

q∗ = arg max
q

L̃SJ(q(Tx,Tz),θ). (IV.13)

This is exactly the variational inference for the mixture model. Specifically, due

to i.i.d. training data, the algorithm of Section III.D is repeated for each training

example using parameter θ. During the i-th pass for y(i), 1) the inference of

Section III.C.1 is first repeated for y(i) under each of the K BDS components; and

then 2) the expected responsibilities of K component to y(i) are computed by
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(III.69) using the component-conditional log-evidence of (III.68).

IV.C.2 M-step

In the M-step, given the current variational distribution q estimated in the

E-step, the model parameter θ is updated by maximizing (IV.12) over θ:

θ∗ = arg max
θ

∑
j

N̂j

{
lnαj −

1
2
(τ̂j − 1) ln

∣∣∣Qj

∣∣∣− 1
2

ln
∣∣Sj
∣∣}

− 1
2 ∑

j
tr
[
S−1

j (ηj − χjµ
ᵀ
j − µjχ

ᵀ
j + N̂jµjµ

ᵀ
j )
]

− 1
2 ∑

j
tr
[

Q−1
j (ϕj −Ψj A

ᵀ
j − AjΨ

ᵀ
j + Ajφj A

ᵀ
j )
]

+ ∑
i,j,d

γ
(i)
j

τi

∑
t=1

[
y(i)dt lnσ(C̃ j,d,:m̃

(i,j)
[t] ) + (1− y(i)dt ) lnσ(−C̃ j,d,:m̃

(i,j)
[t] )

]
− 1

8 ∑
j

tr(C jΓjC
ᵀ
j ), (IV.14)

where the aggregate statistics are

N̂j = ∑i γ
(i)
j , ϕj = ∑i γ

(i)
j ∑τi

t=2 P̂(i)
t,t|j,

τ̂j = ∑i γ
(i)
j τi/N̂j, φj = ∑i γ

(i)
j ∑τi−1

t=1 P̂(i)
t,t|j,

ηj = ∑i γ
(i)
j P̂(i)

1,1|j, Ψj = ∑i γ
(i)
j ∑τi−1

t=1 P̂(i)
t+1,t|j,

χj = ∑i γ
(i)
j m(i,j)

[1] , Γj = ∑i γ
(i)
j ∑τi

t=1 P̂(i)
t,t|j.

(IV.15)

The solution to (IV.19) leads to following explicit update rules of θ∗ for each

component j:

µ∗j =
1

N̂j
χj, S∗j =

1
N̂j

ηj − µ∗j µ∗ᵀj , α∗j = N̂j/N,

A∗j = Ψjφ
−1
j , Q∗j =

1
(τ̂j−1)N̂j

(ϕj − A∗j Ψ
ᵀ
j ),

(IV.16)
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while C̃ j is updated by numerical solutions. See Appendix IV.F for details.

IV.C.3 Initialization

Initialization plays a critical role in the parameter estimation of models

with hidden variables.

For θ, we consider two ways of initializing model parameters: 1) the

suboptimal learning scheme of [97], which consists of a binary PCA and a least

squares problem; and 2) the spectral learning of [18]. We notice from empirical

results that, while the former defines an initial model inferior to that of the latter,

its final convergent result slightly outperforms that of the latter.

For learning the mixture model, we adopt the strategies of [23] and learn

mixture models by component splitting.

IV.D Variational EM for Mixtures of Binary Dynamic

Systems using ELBOJ J

If we substitute (IV.11) into (III.63), use the ELBO in Section III.C.2 and

follow the same derivation in Section III.D, the objective function to optimize in
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VEM of Algorithm 4 is:

L̃J J(q(Tx,Tz),{ξ(i,j)},θ) =

∑
i,j

γ
(i)
j lnαj −

1
2 ∑

i,j
γ
(i)
j ln

∣∣Sj
∣∣− 1

2 ∑
i,j

γ
(i)
j (τi − 1) ln

∣∣∣Qj

∣∣∣
− 1

2 ∑
i,j

γ
(i)
j tr

[
S−1

j
(
P̂(i)

1,1|j − ŝ(i)1|jµ
ᵀ
j − µjŝ

(i)ᵀ
1|j + µjµ

ᵀ
j
)]

− 1
2 ∑

i,j
γ
(i)
j

τi−1

∑
t=1

tr
[

Q−1
j
(
P̂(i)

t+1,t+1|j − P̂(i)
t+1,t|j A

ᵀ
j − AjP̂

(i)ᵀ
t+1,t|j + AjP̂

(i)
t,t|j A

ᵀ
j
)]

− 1
2 ∑

i,j
γ
(i)
j

τi

∑
t=1

tr
[

R̃(i)−1
t,j

(
ũ(i)

t,j ũ(i)ᵀ
t,j − ũ(i)

t,j ŝ(i)ᵀt|j Cᵀ
j − C jŝ

(i)
t|j ũ(i)ᵀ

t,j + C jP̂
(i)
t,t|jC

ᵀ
j
)]

+ ∑
i,j

γ
(i)
j ∑

t,d
ζ(ξ

(i,j)
d,t ) + ∑

i,j
γ
(i)
j H[(qi(X|j)]−∑

i,j
γ
(i)
j lnγ

(i)
j , (IV.17)

where ŝ(i)r|j = 〈xr〉qi(x|j), P̂(i)
r,s|j =

〈
xrxᵀs

〉
qi(x|j) = cov(xr, xs)qi(x|j)+ ŝ(i)r|j ŝ

(i)ᵀ
s|j , and R̃(i)−1

t,j ,

ũ(i)
t,j and ζ(ξ) are defined by (III.50) and (III.51) using ξ(i,j) and y(i), respectively.

The whole VEM algorithm for maximizing (IV.17) is depicted in Algorithm 5,

with E-step, M-step and initialization discussed below.

IV.D.1 E-step

In the E-step, given the current estimate of the model parameter θ =

{α,{Sj,µj, Aj,C j, Qj,uj}K
j=1}, the variational distribution q and parameter ξ are

updated by maximizing (IV.17) jointly over q and ξ:

{q∗,ξ∗} = arg max
{q,ξ}

L̃J J(q(Tx,Tz),{ξ(i,j)},θ). (IV.18)

This is exactly the variational inference for the mixture model. Specifically, due

to i.i.d. training data, the algorithm of Section III.D is repeated for each training
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Algorithm 5: Variational EM for Mixtures of Binary Dynamic Systems
with ELBOJ J

Input: training corpora Ty = {y(i)}N
i=1, initial model parameter θ(0), initial variational parameter

{ξ(i,j)}, number of components K;

n← 0;
repeat

(VE-step):
ϕj,φj, N̂j, τ̃j,Γj,Ψj,ηj,Λj,d,υᵀ

j,d,χj← 0;
for i := 1 to N do

γ̃(i)← 0;
for j := 1 to K do

compute the variational distribution for y(i) under j-th BDS component:

{ln p∗ij,m
(i,j),{Φ(i,j)

[t,t] },{Φ
(i,j)
[t,t+1]},ξ

(i,j)} ← VarInfBDS(y(i),θ(n)j ,ξ(i,j));

γ̃(i)← γ̃(i) + α
(n)
j p∗ij;

end
for j := 1 to K do

update γ
(i)
j and statistics according to (P̂(i,j)

r,s = Φ
(i,j)
[r,s] + m(i,j)

[r] m(i,j)
[s]

ᵀ
)

γ
(i)
j ← α

(n)
j p∗ij/γ̃(i); ϕj←ϕj + γ

(i)
j ∑τi

t=2 P̂(i,j)
t,t ; χj← χj + γ

(i)
j m(i,j)

[1] ;

N̂j← N̂j + γ
(i)
j ; φj← φj + γ

(i)
j ∑τi−1

t=1 P̂(i,j)
t,t ; ηj← ηj + γ

(i)
j P̂(i,j)

1,1 ;

τ̃j← τ̃j + γ
(i)
j τi ; Ψj← Ψj + γ

(i)
j

τi−1
∑

t=1
P̂(i,j)

t+1,t; Γj← Γj + γ
(i)
j

τi
∑

t=1
ρ
(i)
t,j [m

(i,j)
[t]

ᵀ
,1];

for d := 1 to D do

υᵀ
j,d← υᵀ

j,d + γ
(i)
j ∑τi

t=1(2y(i)d,t − 1)
[
m(i,j)

[t]

ᵀ
,1
]
;

Λj,d← Λj,d + γ
(i)
j ∑τi

t=1 λ(ξ
(i,j)
d,t ) ˆ̃P(i,j)

t,t ;

end
end

end
(VM-step):
for j := 1 to K do

update parameter θj and αj according to

α
(n+1)
j ← N̂j/N; µ

(n+1)
j ← 1

N̂j
χj;

S(n+1)
j ← 1

N̂j
ηj − µ

(n+1)
j µ

(n+1)ᵀ
j ; A(n+1)

j ← Ψjφ
−1
j ;

Q(n+1)
j ← 1

τ̃j−N̂j
(ϕj − A(n+1)

j Ψ
ᵀ
j ); [C j,d,:

(n+1),u(n+1)
j,d ]← 1

4 υᵀ
j,dΛ−1

j,d ;

end
n← n + 1;

until convergence;

Output : θ(n)
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example using parameter θ. During the i-th pass for y(i), 1) Algorithm 2 is first

repeated for y(i) under each of the K BDS components, denoted as the inner EM;

and then 2) the expected responsibilities of K component to y(i) are computed by

(III.69) using the component-conditional log-evidence of (III.68) estimated in the

inner EM.

IV.D.2 M-step

In the M-step, given the current variational distribution q and parameter ξ

estimated in the E-step, the model parameter θ is updated by maximizing (IV.17)

over θ:

θ∗ = arg max
θ

∑
j

N̂j

{
lnαj −

1
2
(τ̂j − 1) ln

∣∣∣Qj

∣∣∣− 1
2

ln
∣∣Sj
∣∣}

− 1
2 ∑

j
tr
[
S−1

j (ηj − χjµ
ᵀ
j − µjχ

ᵀ
j + N̂jµjµ

ᵀ
j )
]

− 1
2 ∑

j
tr
[

Q−1
j (ϕj −Ψj A

ᵀ
j − AjΨ

ᵀ
j + Ajφj A

ᵀ
j )
]

− 1
2 ∑

j

{
∑

i
γ
(i)
j

τi

∑
t=1

tr
[

R̃(i)−1
t,j

(
C̃ j

ˆ̃P(i)
t,t|jC̃

ᵀ
j − 2ΓjC̃

ᵀ
j

)]}
,

(IV.19)

where the aggregate statistics are

N̂j = ∑i γ
(i)
j , ϕj = ∑i γ

(i)
j ∑τi

t=2 P̂(i)
t,t|j,

τ̂j = ∑i γ
(i)
j τi/N̂j, φj = ∑i γ

(i)
j ∑τi−1

t=1 P̂(i)
t,t|j,

ηj = ∑i γ
(i)
j P̂(i)

1,1|j, Ψj = ∑i γ
(i)
j ∑τi−1

t=1 P̂(i)
t+1,t|j,

χj = ∑i γ
(i)
j m(i,j)

[1] , Γj = ∑i γ
(i)
j ∑τi

t=1 ρ
(i)
t,j m̃(i,j)

[t]

ᵀ
,

υᵀ
j,d = ∑i γ

(i)
j ∑τi

t=1(2y(i)d,t − 1)m̃(i,j)
[t]

ᵀ
, Λj,d = ∑i γ

(i)
j ∑τi

t=1 λ(ξ
(i,j)
d,t ) ˆ̃P(i)

t,t|j,

(IV.20)
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with C̃ j =

[
C j, uj

]
and

ρ
(i)
t,j =

1
4

[2y(i)1,t − 1

λ(ξ
(i,j)
1,t )

, · · · ,
2y(i)D,t − 1

λ(ξ
(i,j)
D,t )

]ᵀ
, ˆ̃P(i)

t,t|j =

 P̂(i)
t,t|j m(i,j)

[t]

m(i,j)
[t]

ᵀ
1

 . (IV.21)

The solution to (IV.19) leads to following explicit update rules of θ∗ for each

component j:

µ∗j =
1

N̂j
χj, S∗j =

1
N̂j

ηj − µ∗j µ∗ᵀj , C̃∗j,d,: =
1
4 υᵀ

j,dΛ−1
j,d ,

A∗j = Ψjφ
−1
j , Q∗j =

1
(τ̂j−1)N̂j

(ϕj − A∗j Ψ
ᵀ
j ), α∗j = N̂j/N.

(IV.22)

Our further analysis shows that, these update rules achieve global opti-

mality at each M-step, despite that the problem of (IV.19) is non-convex and the

update rules are derived from its stationary point. Note that, this observation is

significant in the sense that, although (IV.22) resemble update rules of the LDS

and other variants, which are widely used in the community [146, 50, 131, 24],

they are solely derived from stationary points of likelihood functions in the pa-

rameter space, yet (even local) optimality is seldom confirmed in the literature.

See Appendix IV.F for complete derivation and proof.

IV.D.3 Initialization

For ξ, the initial value is set by ξ
(i,j)
d,t = 5 in Algorithm 5. In practice,

we found that the result is not sensitive to this initial value, and the inner EM

procedure converges in less than 10 iterations in almost all cases.

Initialization for θ and the mixture model is the same as in Section IV.C.3.
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IV.F Appendix

The parameter estimation is implemented via the variational EM algo-

rithm (Algorithm 5). The details of E-step are discussed in Appendix III.D. In

the M-step, we need to solve the optimization problem of (IV.19) to update
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Θ = {αj,Sj,µj, Aj,C j, Qj,uj} such that

θ∗ = arg max
θ

∑
j

N̂j

{
lnαj −

1
2
[
(τ̂j − 1) ln

∣∣∣Qj

∣∣∣− 1
2

ln
∣∣Sj
∣∣ ]}

− 1
2 ∑

j
tr
[
S−1

j (ηj − χjµ
ᵀ
j − µjχ

ᵀ
j + N̂jµjµ

ᵀ
j )
]

− 1
2 ∑

j
tr
[

Q−1
j (ϕj −Ψj A

ᵀ
j − AjΨ

ᵀ
j + Ajφj A

ᵀ
j )
]

+ ∑
j

g(j)(C j),

(IV.23)

where g(j)(C j) is the lower bound for the observation model in ELBOs, i.e., for

EBLOSJ of (IV.12)

g(j)
1 (C j) =∑

i,d
γ
(i)
j

τi

∑
t=1

[
y(i)kt lnσ(C̃ j,d,:m̃

(i,j)
[t] ) + (1− y(i)kt ) lnσ(−C̃ j,d,:m̃

(i,j)
[t] )

]

− 1
8

tr
(

C̃ j

Γj 0

0 0

 C̃ᵀ
j

)
, (IV.24)

for ELBOJ J of (IV.17)

g(j)
2 (C j) = −

1
2

tr
[(

∑
i

γ
(i)
j

τi

∑
t=1

(
R̃(i)

t,j

)−1
C̃ j

ˆ̃P(i)
t,t|jC̃

ᵀ
j

)
− 2ΓjC̃

ᵀ
j

]
, (IV.25)

and notations are defined the same as in Section IV.C.2 and Section IV.D.2. Let

f (θ) be the objective function of the problem (IV.23). A major challenge here is

that, f (θ) is neither concave not convex in θ, thus setting the gradient to zero with

negative-definite Hessian only guarantees local optimum at best. We show that,

however, the unique stationary point of f (θ) actually achieves global optimum.

To this end, we first derive an algorithm to identify the sub-optimal point θ◦ that

maximizes f (θ) with respect to each of its parameters individually; and then we
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prove that, f (θ) achieves global optimum at θ◦, i.e., θ∗ = θ◦.

IV.F.1 Optimization

Before presenting the results, we study optimization problems of general

forms for brevity, which are used to derive solutions to problems in the rest of

this chapter. Two typical forms of optimization problems are discussed in this

part. They are all shown to be convex problems and closed form solutions are

derived.

Problem 1

The first problem is

max
X∈S++

− b ln |X| − tr(AX−1), s.t. A ∈ S++, b > 0. (IV.26)

Let Y = X−1 ∈ S++, we have

(X∗)−1 = Y∗ = arg max
Y∈S++

b ln |Y | − tr(AY), s.t. A ∈ S++, b > 0, (IV.27)

since X→ Y is a bijection between S++ and S++. Note that problem (IV.27) is

identical to problem (III.85), thus the solution to problem (IV.26) is

X∗ =
1
b

A. (IV.28)
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Problem 2

The second problem is

max
X
− tr

[
D(XCXᵀ − 2BXᵀ)

]
, s.t. X, B ∈Rn×m, C ∈ Sm

++, D ∈ Sn
++. (IV.29)

Let Y = XC
1
2 ∈Rn×m, we have

X∗C
1
2 = Y∗ = arg max

Y
− tr(DYYᵀ) + 2tr(C−

1
2 BᵀDY), (IV.30)

s.t. Y , B ∈Rn×m, C ∈ Sm
++, D ∈ Sn

++,

since X → Y is a bijection between Rn×m and Rn×m. Note that, the objective

function of problem (IV.30) is strictly concave as it consists of 1) a quadratic term

in Y with negative-definite matrix as the coefficient, and 2) a linear term in Y ; and

the domain is a convex set Rn×m. Thus problem of (IV.30) is a convex problem

whose maximum is achieved at either 1) its stationary point(s) (if there is any),

or 2) the boundary of its domain (possibly at infinity, i.e., only the supremum is

available).

The derivative of the objective function of problem (IV.30) is

∂

∂Y
{
− tr(DYYᵀ) + 2tr(C−

1
2 BᵀDY)

}
= −2DY + 2DBC−

1
2 . (IV.31)

Setting (IV.31) to zero leads to

Y∗ = BC−
1
2 , (IV.32)
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and

X∗ = BC−1. (IV.33)

IV.F.2 Finding the Stationary Point

The sub-optimal point θ◦ of f (θ) can be computed by optimizing f (θ)

with respect to each of its parameters individually, in the order of α, {µj}, {Sj},
{Aj}, {Qj}, {C j} and {uj}.

Component Proportion {αj}

Optimizing f (θ) over α requires solving the problem of

max
α

∑j N̂j lnαj (IV.34)

s.t. ∀j, αj > 0,

∑j αj = 1.

Note that, problem (IV.34) is a convex problem since 1) the objective function

of (IV.34) is a concave function in α, and 2) its domain is a convex set (more

precisely, a standard (K− 1)-simplex).

Using Lagrange multipliers λ ∈ R and ν � 0, problem of (IV.34) is con-

verted to an unconstraint one:

max
α,λ,ν

∑j N̂j lnαj + ∑j νjαj + λ(∑j αj − 1). (IV.35)
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By Karush-Kuhn-Tucker conditions, the optimal point {α◦,λ◦,ν◦} shall satisfies

N̂j

α◦j
+ ν◦j + λ◦ = 0, ∀j, (IV.36)

∑j α◦j = 1, (IV.37)

νj
◦α◦j = 0, ∀j, (IV.38)

α◦ � 0. (IV.39)

Obviously, α◦ � 0, thus

ν◦ = 0. (IV.40)

Combining (IV.36), (IV.37) and (IV.40) leads to solution

α◦j =
N̂j

∑k N̂k
=

N̂j

N
. (IV.41)

Initial State Mean µj

Optimizing f (θ) over µj requires solving the problem of

max
µj
− tr

[
S−1

j (N̂jµjµ
ᵀ
j − 2χjµ

ᵀ
j )
]
. (IV.42)

This is of the form of the general problem (IV.29), thus the solution is

µ◦j =
1
N̂j

χj. (IV.43)
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Initial State Covariance Matrix Sj

Optimizing f (θ) over Sj requires solving the problem of

max
Sj�0

− N̂j ln
∣∣Sj
∣∣− tr

[
(ηj − 2χjµ

ᵀ
j + N̂jµjµ

ᵀ
j )S
−1
j
]
. (IV.44)

This is of the form of the general problem (IV.26), thus the solution is

S◦j =
1
N̂j

(ηj − 2χjµ
ᵀ
j + N̂jµjµ

ᵀ
j ) =

1
N̂j

ηj − µ◦j µ◦ᵀj (IV.45)

using the result of (IV.43).

State Transition Matrix Aj

Optimizing f (θ) over Aj requires solving the problem of

max
Aj
− tr

[
Q−1

j (Ajφj A
ᵀ
j − 2Ψj A

ᵀ
j )
]
. (IV.46)

This is of the form of the general problem (IV.29), thus the solution is

A◦j = Ψjφ
−1
j . (IV.47)

State Noise Matrix Qj

Optimizing f (θ) over Qj requires solving the problem of

max
Qj�0

− N̂j(τ̂j − 1) ln
∣∣∣Qj

∣∣∣− tr
[
(ϕj − 2Ψj A

ᵀ
j + Ajφj A

ᵀ
j )Q

−1
j
]
. (IV.48)
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This is of the form of the general problem (IV.26), thus the solution is

Q◦j =
1

(τ̂j − 1)N̂j
(ϕj − 2Ψj A

ᵀ
j + Ajφj A

ᵀ
j ) =

1
(τ̂j − 1)N̂j

(
ϕj − A◦j Ψ

ᵀ
j

)
(IV.49)

using the result of (IV.47).

Observation Matrix C j and Mean Vector uj for ELBO 1

Updating C̃ j in Section IV.C.2 requires solving the optimization problem

of

C̃∗j =arg max
C̃ j

g(j)
1 (C̃ j), (IV.50)

g(j)
1 (C̃ j) =∑

i,d
γ
(i)
j

τi

∑
t=1

[
y(i)kt lnσ(C̃ j,d,:m̃

(i,j)
[t] ) + (1− y(i)kt ) lnσ(−C̃ j,d,:m̃

(i,j)
[t] )

]

− 1
8

tr
(

C̃ j

Γj 0

0 0

 C̃ᵀ
j

)
. (IV.51)

Note that, problem (IV.50) is a convex optimization problem since 1) its objective

function is the sum of a quadratic term with semi-negative definite matrix as

the coefficient (diag(Γj,0) � 0), and a conical combination (with γ
(i)
j > 0 as

coefficients) of negative log-sum-exp of C̃ j, and 2) its domain RD×(L+1) is a

convex set.

Defining the vector form of C̃ j as

c̃j = [C̃ j,1,:, · · · , C̃ j,D,:]
ᵀ, (IV.52)
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the derivative of (IV.51) is

∂

∂c̃j
g(j)

1 (c̃j) = −
1
4

diag(Γj, · · · ,Γj)c̃j −
1
4 ∑

i,t
γ
(i)
j


(σ(C̃ j,1,:m̃

(i,j)
[t] )− y(i)1t )m̃

(i,j)
[t]

...

(σ(C̃ j,D,:bt,i)− y(i)Dt)m̃
(i,j)
[t]

 ;

(IV.53)

and the second-order derivative of g(j)
1 (c̃j) is

∂2

∂c̃2
j

g(j)
1 (c̃j) =−

1
4

diag(Γj, · · · ,Γj)

− 1
4 ∑

i
γ
(i)
j

τi

∑
t=1


β1m̃(i,j)

[t] m̃(i,j)
[t]

ᵀ

. . .

βDm̃(i,j)
[t] m̃(i,j)

[t]

ᵀ

 ,

(IV.54)

where

βk = σ(C̃ j,d,:m̃
(i,j)
[t] )σ(−C̃ j,d,:m̃

(i,j)
[t] ).

Numerical solvers (e.g., gradient ascent, Newton-Raphson method, BFGS al-

gorithm) can be used to search for the unique stationery point, i.e., the global

optimal point.
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Observation Matrix C j and Mean Vector uj for ELBO 2

Defining X = C̃ᵀ
j for convenience, optimizing f (θ) over C̃ j in Section IV.D.2

requires solving the problem of

max
X

g(j)
2 (X) (IV.55)

s.t. g(j)
2 (X) = −∑

i
γ
(i)
j

{ τi

∑
t=1

tr
[

Dt,iXBt,iXᵀ − 2Et,iBt,iXᵀ
]}

, (IV.56)

where

Bt,i =
(

R̃(i)
t,j

)−1
, Dt,i = P̂(i)

t,t|j, Et,i = m̃(i,j)
[t] ρ

(i)ᵀ
t,j .

using the statistics of (IV.20). The first-order derivative of (IV.56) is

∂

∂X
g(j)

2 (X) = 2∑
i

γ
(i)
j

{ τi

∑
t=1

[
Et,iBt,i − Dt,iXBt,i)

]}
; (IV.57)

or, in the vectorized form,

∇vec(X) g(j)
2 (X) = −2

[
∑

i
γ
(i)
j

τi

∑
t=1

(
Bt,i ⊗ Dt,i

)]
vec(X) + 2∑

i
γ
(i)
j

τi

∑
t=1

vec(Et,iBt,i),

(IV.58)

where vec(A) is the vectorization of A by concatenating the columns of A, and

A⊗ B is the Kronecker product of A and B. Using (III.50), the Hessian of (IV.56)

in the vectorized form is

H =∇2
vec(X) g(j)

2 (X)

= −2∑
i

γ
(i)
j

τi

∑
t=1

Bt,i ⊗ Dt,i

= −4∑
i

γ
(i)
j

τi

∑
t=1

diag(λ(ξ(i,j)1,t )Dt,i, · · · ,λ(ξ(i,j)D,t )Dt,i).

(IV.59)
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This leads to the vectorized form of (IV.56)

g(j)
2 (X) =

1
2

vec(X)ᵀ · H · vec(X) + bᵀX · vec(X), (IV.60)

where

bX = ∑i γi

τi

∑
t=1

vec(Bt,iEt,i)

= ∑i γ
(i)
j

τi

∑
t=1

[
(2y(i)1,t − 1)m̃(i,j)

[t]

ᵀ
, · · · , (2y(i)D,t − 1)m̃(i,j)

[t]

ᵀ]ᵀ
.

(IV.61)

Note that, g(j)
2 (X) is quadratic in X with a negative-definite Hessian H, and its

domain R(L+1)×D is a convex set; therefore problem (IV.55) is a convex optimiza-

tion problem. It follows that, (IV.56) is a strictly concave function in X, and the

optimal point X◦ of (IV.56) or (IV.60) is computed in the closed form by

vec(X◦) = −H−1bX

=
1
4



{
∑
i,t

[
γ
(i)
j λ(ξ

(i,j)
1,t )Dt,i

]}−1{
∑
i,t

(
γ
(i)
j (2y(i)1,t − 1)m̃(i,j)

[t]

)}
...{

∑
i,t

[
γ
(i)
j λ(ξ

(i,j)
D,t )Dt,i

]}−1{
∑
i,t

(
γ
(i)
j (2y(i)D,t − 1)m̃(i,j)

[t]

)}


.

(IV.62)

Thus,

C̃◦j,d,: =
1
4

{
∑
i,t

γ
(i)
j (2y(i)1,t − 1)m̃(i,j)

[t]

ᵀ
}{

∑
i,t

[
γ
(i)
j λ(ξ

(i,j)
1,t )P̂(i)

t,t|j
]}−1

. (IV.63)
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IV.F.3 Global Optimality of the M-step

Although the objective function f (θ) of (IV.23) is generally non-concave,

the sub-optimal point θ◦ that is determined in Section IV.F.2 via stationary point

conditions, nevertheless, achieves global optimum for f (θ) by the following theo-

rem.

Theorem 1 (Global Optimality) For the objective function f (θ) of problem (IV.23),

and the parameter θ◦ determined in Section IV.F.2,

f (θ◦)> f (θ), ∀ θ∈ Tθ, (IV.64)

where Tθ is the feasible set of problem (IV.23).

Proof (Proof by contradiction) Assume that there exists another point θ′ 6= θ◦ such

that f (θ′) > f (θ◦). Consider the following procedure.

1. Define θ′1 ≡ {α̃,{µ′j},{S′j},{A′j},{Q′j},{C′j},{u′j}}, where

α̃ = arg max
α

f (α,{µ′j},{S′j},{A′j},{Q′j},{C′j},{u′j}). (IV.65)

From the solution of (IV.34),

α̃ = α◦. (IV.66)

Thus θ′1 = {α◦,{µ′j},{S′j},{A′j},{Q′j},{C′j},{u′j}}, and

f (θ′1)> f (θ′). (IV.67)
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2. Define θ′2 ≡ {α◦,{µ̃j},{Sj},{A′j},{Q′j},{C′j},{u′j}}, where

{µ̃j} = arg max
{µj}

f (α◦,{µj},{S′j},{A′j},{Q′j},{C′j},{u′j}). (IV.68)

From the solution of (IV.42),

µ̃j = µ◦j . (IV.69)

Thus θ′2 = {α◦,{µ◦j },{S′j},{A′j},{Q′j},{C′j},{u′j}}, and

f (θ′2)> f (θ′1). (IV.70)

3. So forth.

In this way, a sequence of parameters θ′1, · · · ,θ′6 can be produced such that

f (θ′i)> f (θ′i−1) (IV.71)

by repeating the above procedure in the order of α, {µj}, {Sj}, {Aj}, {Qj}, {C̃ j},
and, at each step, using the parameter of the last step θ′i−1 (θ′0 = θ′) as the initial

point to optimize over the i-th parameter while fixing others . Note that, the

solution to each of these problems in Section IV.F.2 is unique and deteministic.

Thus it follows that

θ′6 = θ◦, (IV.72)

and

f (θ◦) = f (θ′6)> f (θ′0) = f (θ′) > f (θ◦). (IV.73)
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The contradiction of f (θ◦) > f (θ◦) in (IV.73) negates the initial proposition on

the existence of θ′. Therefore,

f (θ◦)> f (θ), ∀ θ∈ Tθ. (IV.74)

The theorem justifies the global optimality of the update rules of (IV.22) in

the M-step of Algorithm 5. Similar conclusions can also be made in the same

way for other popular Gaussian state-space models, e.g., [146, 50, 131, 24], where

little result has been reported on this crucial property before.



Chapter V

Encoding Sequential Data with

Dynamic Systems

87
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While dynamic systems presented in Chapter II and the tools for inference

and learning in Chapter III and Chapter IV provide a statistical framework

for characterization of sequential data generation and probabilistic reasoning,

discriminative tasks typically require features for these length-varying signals

that exploit the generative properties. In this chapter, we present several methods

of encoding binary sequential data for discriminative tasks via the dynamic

systems we introduced. Although in this work we specifically focus on binary

sequential signals (attribute dynamics), these ideas can be easily extended to

other scenarios, including the special case of LDS [127, 100].

V.A Bag-of-Words for Attribute Dynamics

In this section, we introduce the bag-of-words for attribute dynamics (BoWAD)

representation. Inspired by the bag-of-visual-words (BoVW) framework in image

analysis, BoWAD essentially encodes the zeroth order statistics of sequential

binary data using a vocabulary of BDS codewords. This consists of quantizing

sequential signals recorded from a target into BDS, words of attribute dynamics

(WADs), and representing the target with the histogram of occurrences of the

codewords. For this purpose, we need to specify 1) how to learn the codewords

by clustering training data; and 2) how the difference (or similarity) is quantified

between a sequential signal and a codeword, between two codewords. One sta-

tistically plausible implementation is to learn a mixture of dynamic models using

parameter estimation of Section IV.B, and to use the log-evidence as the similarity

metric between a binary sequence and BDS codeword. Here we exploit another

more computationally efficient alternative, which generalizes the principle of

k-means to the binary sequences.
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V.A.1 Clustering Samples in the Model Domain

Conventional clustering algorithms identify prototypes in the space of

training examples (e.g., in k-means, a cluster prototype is the centroid of the

samples in the cluster), using a metric suited for that space (e.g., Euclidean

distance). Clustering a collection of binary sequences is not straightforward

because 1) binary sequences can have different length; 2) the space of these

sequences has non-Euclidean geometry; and 3) the search for optimal prototypes,

under this geometry, may lead to intractable non-linear optimization. This

is compounded by the fact that the dynamics of binary sequences are better

summarized by a set of prototype BDSs than a set of prototype sequences.

The problem of learning a set of BDS prototypes is an instance of the

problem of learning a bag-of-models (BoM). Given a training set D = {zi}N
i=1 (zi ∈

Z ,∀i), the goal is to learn a dictionary of representative models {Mi(z)}NC
i=1 in a

model spaceM. The proposed solution is based on two mappings. The first

fM : Z ⊇ {zi} 7→ M ∈M (V.1)

maps a set of examples {zi} ⊆ D into a model M(z). The second,

M×M3 (M1, M2) 7→ dM(M1, M2) ∈R+ (V.2)

measures the dissimilarity or distance between models.

The mapping of (V.1) is first used to produce a model M(zi) per training

example zi. Training samples are then clustered, at the model level, by alternating

between two steps. In the assignment step, each zi is assigned to the cluster whose

model is closest to M(zi), using the mapping of (V.2). In the model refinement step,
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Algorithm 6: Bag-of-Models Clustering

Input : a set of samples D = {zi}N
i=1 (zi ∈ Z ,∀i), number of clusters

NC, an initial set of models {M(0)
i }

NC
i=1.

set t = 0 and S(0)
i =∅, i = 1, · · · , NC;

repeat
t = t + 1;
Assignment-Step: ∀i, S(t)

i = {z ∈ D | ∀j 6= i, dM(M(z), M(t−1)
i )6

dM(M(z), M(t−1)
j )}

Refinement-Step: ∀i, M(t)
i = M({S(t)

i })
until ∀i,S(t)

i = S(t−1)
i ;

Output : {M(t)
i }

NC
i=1 and {S(t)

i }
NC
i=1

the model associated with each cluster is relearned from the training samples

assigned to it, via (V.1). This procedure is summarized in Algorithm 6 and

denoted bag-of-models clustering (BMC).

BMC generalizes k-means, where zi ∈ Rd are feature vectors,M is the

space of Gaussians of identity covariance

M =
{
G(z;µ, Id) | µ ∈Rd }, (V.3)

(V.1) selects the model

M({zi}) = G(z; µ̂, I), (V.4)

where µ̂ is the ML estimate of the mean

µ̂ = arg max
µ

p({zi};µ) =
1
|{zi}|∑i zi, (V.5)

and (V.2) is the symmetric KL divergence derived from (II.1),

KL(p1||p2) + KL(p2||p1) = ||µ1 − µ2||2. (V.6)



91

It should be noted that BMC differs from the bag-of-systems approach

[128, 2] in two ways. First, it clusters attribute sequences rather than models. While,

in the refinement step of Algorithm 6, models are re-learned from examples {zi},
the refinement step of [128, 2] only considers parameters of the models M(zi) and

not the examples zi themselves. This usually entails loss of information. Second,

Algorithm 6 finds the optimal representative for each cluster, according to the

model fitting criterion of (V.1). In [128], the difficult geometry of the manifold

defined by the LDS parameter tuple (A,C) ∈ GL(n)× ST(p,n), where GL(i)

is the set of invertible matrices of size n and ST(p,n) the Stiefel manifold of

p× n orthonormal matrices (p > n), precludes a simple estimate of the optimal

representative. Instead, this is approximated by model M(zi) closest to the

optimal representative. Although [2] introduce an approach to directly cluster

LDS’s in parameter space, its generalization to the BDS is unclear. We will

show, in Section VI.E, that these differences can lead to significantly improved

performance by Algorithm 6.

V.A.2 Dissimilarity Measure Between BDSs

Algorithm 6 requires a measure of distance Between BDSs. For this, we

generalize a popular measure of distance between LDSs, the Binet-Cauchy ker-

nel (BCK) of [161]. Given LDSs Ωa and Ωb driven by identical noise processes vt

and wt with observation sequences y(a) and y(b), the BCK is

KBC(Ωa,Ωb) =

〈
∞

∑
t=0

e−λt(y(a)
t )ᵀWy(b)

t

〉
p(v,w)

, (V.7)

where W is a semi-definite positive weight matrix and λ > 0 a temporal dis-

counting factor. To extend (V.7) to BDSs Ωa and Ωb, we note that (y(a)
t )ᵀWy(b)

t
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is the inner product of the Euclidean space of metric d2(y(a)
t ,y(b)

t ) = (y(a)
t −

y(b)
t )ᵀW(y(a)

t − y(b)
t ). For BDSs, whose observations yt are Bernoulli distributed

with parameters {σ(θ(a)
t )}, for Ωa, and {σ(θ(b)t )}, for Ωb, this distance mea-

sure is naturally replaced by the symmetric KL divergence between Bernoulli

distributions. This results in the Binet-Cauchy KL divergence (BC-KLD) 1

DBC(Ωa,Ωb) = Ev

[
∞

∑
t=0

e−λt
(

KL(B(σ(θ(a)
t ))||B(σ(θ(b)t )))

+ KL(B(σ(θ(b)t ))||B(σ(θ(a)
t )))

)]
= Ev

[
∑∞

t=0 e−λt(σ(θ(a)
t )− σ(θ

(b)
t )
)ᵀ(

θ
(a)
t − θ

(b)
t
)]

, (V.8)

where θt = Cxt + u is the parameter of the multivariate Bernoulli distribution.

The divergence at time t can be rewritten as

(σ(θ
(a)
t )− σ(θ

(b)
t ))ᵀ(θ

(a)
t − θ

(b)
t ) = (θ

(a)
t − θ

(b)
t )ᵀŴ t(θ

(a)
t − θ

(b)
t ), (V.9)

with Ŵ t a diagonal matrix whose k-th diagonal element is Ŵt,k = (σ(θ
(a)
t,k ) −

σ(θ
(b)
t,k ))/(θ

(a)
t,k − θ

(b)
t,k ) = σ′(θ̂(a,b)

t,k ) (where, by the mean value theorem, θ̂
(a,b)
t,k is

some real value between θ̂
(a)
t,k and θ̂

(b)
t,k ). This reduces (V.9) to a form similar to (V.7),

although with a time varying weight matrix W t. It is, nevertheless unclear

whether (V.8) can be computed in closed-form. We rely on the approximation

DBC(Ωa,Ωb) ≈
∞

∑
t=0

e−λt
[
σ(θ̄

(a)
t )− σ(θ̄

(b)
t )
]ᵀ [

θ̄
(a)
t − θ̄

(b)
t

]
, (V.10)

where θ̄ is the mean of θ.
1Although the square root of the symmetric KL divergence is not a metric (since the triangle

inequality does not hold), it has been shown effective for the design of probability distribution
kernels, in the context of various applications [106, 159, 55, 21].
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V.A.3 Learning a WAD Vocabulary

Given the BC-KLD distance between BDSs, it is possible to learn a WAD

dictionary from a set of binary sequencesP = {Π(i)}N
i=1, by applying Algorithm 6

as follows.

Refinement-Step: The mapping of (V.1) amounts to fitting a BDS to P ′ =
{Π(i)} ⊆ P . This is done with Algorithm 3. The BDS learned per cluster jointly

characterizes the appearance and dynamics of all attribute sequences in that

cluster.

Assignment-Step: Each sample BDS is assigned to the closest centroid BDS,

using (V.10).

To initialize the clustering algorithm, we follow the strategy of [23]. This

has produced satisfactory results in all our experiments.

V.A.4 Quantization of BoAS with WAD Vocabulary

Given a WAD dictionary {Ω(i)}V
i=1, a set of binary sequences {y(i)

1:τi
}N

i=1 is

quantized by assigning the i-th attribute sequence to the k∗-th cluster according

to

k∗ = arg min
j

dBC
(
Ω(y(i)

1:τi
),Ω(j)), (V.11)

where Ω(y(i)
1:τi

) is the BDS learnt from y(i)
1:τi

using (V.1). This produces a histogram

of WAD counts, denoted bag-of-words for attribute dynamics (BoWAD), which can

be used to classify video sequences of complex activities with the procedures

commonly used for the BoVW [93, 166].
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V.B Encoding Attribute Dynamics via Fisher Vector

In this section, we derive a scheme to encode the first-order statistics of a

set of binary sequences using a BDS vocabulary, denoted as the vector of locally

aggregated descriptors for attribute dynamics (VLADAD).

V.B.1 Bag-of-Models Interpretation of VLAD

The vector of locally aggregated descriptors (VLAD) [71] is an efficient

representation of the first-order statistics of a data sample. It has been shown to

outperform the BoVW histogram, which only captures zero-order statistics, in

many image classification experiments. To extend the VLAD to the BoM, we start

by interpreting it as an encoding of sample statistics with respect to a collection

of local tensors of a model manifold.

Consider a Riemannian manifoldM with geodesic distance dM(M1, M2),

such as (V.2), a set of reference models {Mi}NC
i=1, embedded inM, and neighbor-

hoods

Ri = {M ∈M|dM(M, Mi)6 dM(M, Mj), j 6= i},

whereRi is the neighborhood of Mi under dM. To encode a collection of exam-

ples D = {zi}N
i=1 (zi ∈ Z ,∀i), these are first assigned to the regionsRi

Di = {z ∈ D| fM(z) ∈ Ri} (V.12)

using an assignment mapping fM, such as (V.1).

VLAD assumes examples z ∈RD and Gaussian models Mi, i.e., a model
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manifold

M =
{
G(z;µ,Σ) | µ ∈RD,Σ ∈ SD

++

}
, (V.13)

with geodesic distance approximated by the symmetric KL divergence

dM(M1, M2) = KL(pM1 ||pM2) + KL(pM2 ||pM1), (V.14)

where KL(pM1 ||pM2) is defined in (II.1). Most VLAD implementations assume

that Σ = I, reducing (V.14) to the Euclidean metric ||µ1 − µ2||2 (Di assigned to

the model of mean closest to the sample centroid). In this case, the assignment

mapping maps an example z to a Gaussian of mean µ and identity covariance,

i.e.,

fM(z) : z→G(z;µ, ID) (V.15)

where µ ∈ {µi} is the mean of one of the reference Gaussians.

As illustrated in Fig. V.1, the idea behind VLAD is to use the local tensor

GMi defined by distance dM(·, ·) at Mi to encode the distribution of Di. A de-

scriptor of D is then constructed by 1) aggregating the encoding of the examples

in Di, for each regionRi, and 2) concatenating the aggregate encodings from all

regions. WhenM is a statistical manifold (of parameter θ), a commonly used

metric tensor is the Fisher kernel [64]

KM(z1,z2) = Uᵀ
M(z1)I−1

M UM(z2), (V.16)
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M

Z

z1

z2

z3

Mz3

Mz2

Mz1

Mi

Di

Ri

∂Ri

fM(·)

ÛMi
(z1)

ÛMi
(z2)

ÛMi
(z3)

TMi

Figure V.1: VLAD encoding under the bag of models representation. The
samples in Di are first mapped into model manifoldM by fMi(z), and then
encoded by their statistics with respect to Mi (the red star in the figure), using
the mapping ÛMi(z) = I−1/2

Mi
UMi(z) defined by the local tensor GMi , i.e., the

metric of the tangent space at Mi (the blue plane in the figure).

where

UM(z) = Oθ log pM(z;θ), (V.17)

is the Fisher score and IM is the Fisher information metric2 at M. This tensor can be

shown to approximate the KL-divergence in the neighborhood of M [4].

2In practice, the Fisher information metric IM is often omitted, since the Fisher kernel is an

Euclidean metric in the range space of the invertible linear transformation by I
1
2
M, of the tangent

space of the manifold at M.
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For the manifold of (V.13), the Fisher score is

UM(z) =

 Oµ log pM(z;µ,Σ)

OΣ−1 log pM(z;µ,Σ)

 ,

with

Oµ log pM(z) = Σ−1(z− µ), (V.18)

OΣ−1 log pM(z) =
1
2

[
Σ− (z− µ)(z− µ)ᵀ

]
. (V.19)

After the aggregation over the sample Di, (V.18) encodes the relative position of

the centroid of this sample w.r.t.

the region center µi (under the Mahalanobis metric defined by Σ−1
i ). Similarly,

(V.19) encodes the relative shape of the sample w.r.t. that of the reference distri-

bution, which is parametrized by Σi. Under the assumption that Σ = I, (V.18)

reduces to z − µ and the second order statistics of (V.19) are usually omitted.

This has some loss but reduces complexity [71].

V.B.2 Vector of Locally Aggregate Descriptors for Attribute Dy-

namics

The extension of the VLAD to the BDS requires evaluating the derivative

of the expected log-likelihood of the sample with respect to the model param-

eters. This, however, is intractable, due to the intractability of the posterior

distribution of BDS state given observations. To overcome this difficulty, we

resort to approximate variational inference [79]. A similar strategy has recently

been shown effective for image analysis [30].
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The VLAD for attribute dynamics (VLADAD) approximates the Fisher

score of the BDS by the derivatives of the ELBO with respect to the model

parameters.

Using ELBOSJ in Section III.C.1

It can be shown that (see Appendix V.E.2), given an attribute sequence y

and BDS θ = {S−1,µ, A, Q−1,C, u}3, L̂ (θ,q∗) of (III.38) is of the form (using the

same notations as in Section III.C.1)

L̂SJ(θ,q∗) =− 1
2

{
(τ − 1) ln |Q|+ ln |S|+ tr

[
S−1(P̂∗1,1 − µm∗ᵀ

[1] −m∗[1]µ
ᵀ + µµᵀ)

]
+ tr

[
Q−1(ϕ−ΨAᵀ − AΨᵀ + AφAᵀ)]+ 1

4
tr
[
C
(
∑

t
Φ∗[t,t]

)
Cᵀ
]}

+ ∑
t,k

[
ykt lnσ(ω̂∗kt) + (1− ykt) lnσ(−ω̂∗kt)

]
+ const, (V.20)

which has derivatives

∂

∂S−1 L̂SJ(θ,q∗) =
1
2

(
S + µm∗ᵀ

[1] + m∗[1]µ
ᵀ − P̂∗1,1 − µµᵀ

)
, (V.21)

∂

∂µ
L̂SJ(θ,q∗) = S−1(m∗[1] − µ), (V.22)

∂

∂A
L̂SJ(θ,q∗) = Q−1(Ψ− Aφ), (V.23)

∂

∂Q−1 L̂SJ(θ,q∗) =
1
2

[
ΨAᵀ + AΨᵀ − AφAᵀ −ϕ+ (τ − 1)Q

]
, (V.24)

∂

∂C̃
L̂SJ(θ,q∗) = −1

4

{
C̃Υ̃ +

τ

∑
t=1


σ(C̃1,:m̃∗[t])− y1t

...

σ(C̃D,:m̃∗[t])− yDt

 m̃∗[t]
ᵀ

}
, (V.25)

3For simplicity, we consider the precision matrices S−1 and Q−1 instead of the covariances
S, Q in the computation of Fisher scores.
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where

P̂∗r,s = Φ∗[r,s] + m∗[r]m
∗ᵀ
[s] , ϕ=

τ

∑
t=2

P̂∗t,t, φ =
τ−1

∑
t=1

P̂∗t,t, Ψ =
τ

∑
t=2

P̂∗t,t−1;

and C̃ = [C,u],

Υ̃ =


τ

∑
t=1

Φ∗[t,t] 0

0 0

 .

Using ELBOJ J in Section III.C.2

It can be shown that (see Appendix V.E.3), given attribute sequence y and

BDS θ = {S−1,µ, A, Q−1,C, u}, L̂ (θ,q∗) of (III.49) is of the form (using the same

notations as in Section III.C.2)

L̂J J(θ,q∗) =− 1
2

{
(τ − 1) ln |Q|+ tr

[
S−1(P̂∗1,1 − µm∗ᵀ

[1] −m∗[1]µ
ᵀ + µµᵀ)

]
+ ln |S|+ tr

[
Q−1(ϕ−ΨAᵀ − AΨᵀ + AφAᵀ)

]
+

τi

∑
t=1

tr
[

R̃−1
t

(
C̃ ˆ̃P∗t,tC̃

ᵀ − 2ΓtC̃
ᵀ
)]}

+ const,

(V.26)

which has derivatives

∂

∂S−1 L̂J J(θ,q∗) =
1
2

(
S + µm∗ᵀ

[1] + m∗[1]µ
ᵀ − P̂∗1,1 − µµᵀ

)
, (V.27)

∂

∂µ
L̂J J(θ,q∗) = S−1(m∗[1] − µ), (V.28)

∂

∂A
L̂J J(θ,q∗) = Q−1(Ψ− Aφ), (V.29)

∂

∂Q−1 L̂J J(θ,q∗) =
1
2

[
ΨAᵀ + AΨᵀ − AφAᵀ −ϕ+ (τ − 1)Q

]
, (V.30)

∂

∂C̃
L̂J J(θ,q∗) =

τi

∑
t=1

R̃−1
t (Γt − C̃ ˆ̃P∗t,t), (V.31)
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where C̃ = [C,u],

ϕ=
τ

∑
t=2

P̂∗t,t, φ =
τ

∑
t=2

P̂∗t−1,t−1, Ψ =
τ

∑
t=2

P̂∗t,t−1,

and

ˆ̃P∗t,t =

 P̂∗t,t m∗[t]

m∗[t]
ᵀ 1

 , Γt = ρtm̃
∗
[t]
ᵀ, ρt =

1
4

[2y1,t − 1
λ(ξ∗1,t)

, · · · , 2yD,t − 1
λ(ξ∗D,t)

]ᵀ
.

The VLADAD is then computed by 1) concatenating (V.21)-(V.25) (for

ELBO 1), or (V.27)-(V.31) (for ELBO 2), and 2) aggregating over all attribute

sequences extracted from a query video sequence. To improve discrimination,

we apply a power-normalization and then L2-normalize the VLADAD feature

vector, as suggested in [71].

V.C Probabilistic Kernels for Attribute Sequences

Many practical tasks of pattern analysis require a proper relationship

characterization between the examples of interest. This is typically implemented

with a kernel function that quantifies the similarity of two examples [145]. For

sequential data of variable length, where direct comparison is difficult, a common

practice is to devise kernel functions via generative models that can explain the

data. In this light, we design a p-kernel [57] to encode similarity of two binary

sequences via BDS. Note that, unlike the state of the arts [97, 99], we propose a

provable positive-definite kernel that can be computed via an efficient explicit

closed-form feature mapping to the reproducing kernel Hilbert space (RKHS).

Let p(θ) be a prior distribution for the model parameter θ. The p-kernel
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k(y1,y2) on the example space Y is defined via the probabilistic model p(y|θ) as

k(y1,y2) =
∫

θ
p(y1|θ)p(y2|θ)p(θ)dθ. (V.32)

Intuitively, (V.32) evalutes the similarity of two examples by computing their

correlation of likelihoods at multiple “probing” models, subject to the model

prior distribution. To leverage information from a training set Ty = {y(i)}N
i=1 for

the optimal coverage of Y , an empirical p-kernel is defined as

k(y1,y2;Ty) =
∫

θ
p(y1|θ)p(y2|θ)p(θ|Ty)dθ ≈ 1

N ∑i p(y1|θi)p(y2|θi), (V.33)

where p(θ|Ty) is approximated by p(θ|Ty)≈ 1
N ∑i δ(θ− θi) with θi = arg maxθ p(y(i);θ)

as the surrogate model of example y(i). To further facilitate the use of classifiers

operating in the real-valued vector space with the kernel of (V.33), an explicit

feature mapping can be constructed as

F : Y →RN : y 7→ 1
τ

[
ln p(y|θ1), · · · , ln p(y|θN)

]ᵀ, (V.34)

where τ is the length of sequence y. Using the explicit mapping of (V.34), a binary

sequence is converted to a point in the N-dimensional real vector space with

regular dot product as the kernel, where discriminative methods can be readily

implemented for classification.
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V.E Appendix

V.E.1 Convergence of Bag-of-Models Clustering

The bag-of-models clustering procedure of Algorithm 6 is a general frame-

work for clustering examples in a Riemannian manifoldM of statistical models.

The goal is to find a preset number of models {Mj}K
j=1 ⊂M in the manifold that

best explain a corpora D = {zi}N
i=1 (zi ∈ Z ,∀i). It is assumed that all models M

are parametrized by a set of parameters θ and have smooth likelihood functions

(derivatives of all orders exist and are bounded), and that Algorithm 6 satisfies

the following conditions.

Condition 1: the operation fM of (V.1) consists of estimating the parameters θ of

M by the maximum likelihood estimation (MLE) principle.

Condition 2: the Riemannian metric of the manifoldM defined by the Fisher in-

formation Iθz [64, 4] is used as the dissimilarity measure of (V.2). More precisely,

the metric ofM in the neighbrhood of model Mz is

dM(M∗, Mz) = ||θ∗ − θz||2Iθz
, (V.35)



103

where ||θ1 − θ2||2I = (θ1 − θ2)
ᵀI(θ1 − θ2), and the Fisher information Iθz is

defined as [5]

Iθz = −Ex∼p(x;θz)

[
∇2

θ ln p(x;θ)|θ=θz

]
. (V.36)

Given the similarity between Algorithm 6 and k-means, the convergence

of the former can be studied with the techniques commonly used to show that

the latter converges. This requires the definition of a suitable objective function

to quantify the quality of the fit of the set {Mi}K
j=1 to the corpora D. We rely on

the objective

ζ({Mi}K
j=1,{Sj}K

j=1) = ∑
j

∑
z∈Sj

ln pMj(z), (V.37)

where pM(·) is the likelihood function of model M, and Sj a subset of D, con-

taining all examples assigned to j-th model. Note that this implies that ∀i 6=
j,Si

⋂
Sj = ∅ and

⋃
j

Sj = D. From the assumption of smooth models M (i.e.,

∀z ∈ Z , M ∈ M, pM(z) < ∞) and the fact that there is only a finite set of as-

signments {Sj}K
j=1, the objective function of (V.37) is upper bounded. Since the

refinement step of Algorithm 6 updates the models so that

M(t+1)
j = fM(S(t+1)

j ) = arg max
M∈M

∑
z∈S(t+1)

j

ln pM(z),

the objective either increases or remains constant after each refinement step. It

remains to prove that the same holds for each assignment step. If that is the case,

Algorithm 6 produces a monotonically increasing and upper-bounded sequence

of objective function values. By the monotone convergence theorem, this implies

that algorithm converges in a finite number of steps. Note that, as in k-means,

there is no guarantee on convergence to the global optimum.

It thus remains to prove that the objective of (V.37) increases with each
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assignment step. The Riemannian structure of the manifoldM, makes this proof

more technical than the corresponding one for k-means. In what follows, we

provide a sketch of the proof. Let M∗ be the model (of parameters θ∗) to which

example z is assigned by the assignment step of Algorithm 6, i.e.,

M∗ = arg min
M∈{M(t)

j }K
j=1

dM(Mz, M) (V.38)

and M◦ (of parameter θ◦) the equivalent model of the previous iteration. It

follows from Condition 2 that

dM(M∗, Mz) = ||θ∗ − θz||2Iθz

6 dM(M◦, Mz) = ||θ◦ − θz||2Iθz
.

(V.39)

Note that, Mz is the model p(z;θz) onto which z is mapped by (V.1). From

Condition 1, θz = arg maxθ p(z;θ) and, using a Taylor series expansion,

ln p(z;θ) ≈ ln p(z;θz) + 〈∇θ ln p(z;θ)|θ=θz ,θ− θz〉+
1
2
||θ− θz||2Hθz

(V.40)

= ln p(z;θz) +
1
2
||θ− θz||2Hθz

, (V.41)

where Hθz =∇2
θ ln p(z;θ)|θ=θz is the Hessian of ln p(z;θ) at θz. Since p(z;θz) is

the model obtained from a single example z, it is a heavily peaky distribution

centered at z. Hence, the expectation of (V.36) can be approximated by

Iθz ≈ −Hθz . (V.42)
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Combining (V.39), (V.41), and (V.42) then results in

ln p(z;θ∗) ≈ ln p(z;θz) +
1
2
||θ∗ − θz||2Hθz

≈ ln p(z;θz)−
1
2
||θ∗ − θz||2Iθz

> ln p(z;θz)−
1
2
||θ◦ − θz||2Iθz

≈ ln p(z;θ◦).

It follows that the objective of (V.37) increases after each assignment step. This is

intuitive in the sense that, the closer a model M is to an example’s representative

model, the better M can explain that example.

V.E.2 The Fisher Vector for BDS Using ELBOSJ

In this section, we present the derivation of the Fisher vector for BDS

using the tightest variational lower bound L̂SJ(θ,q∗) of (V.26). This consists of

computing partial derivatives of L̂SJ(θ,q∗) w.r.t. each of the BDS parameters

θ = {S−1,µ, A, Q−1,C,u}.

Derivative w.r.t. S−1

We have

∂

∂S−1 L̂SJ(θ,q∗) =
∂

∂S−1
1
2

{
ln
∣∣∣S−1

∣∣∣− tr
[(

P̂∗1,1 − 2m∗[1]µ
ᵀ + µµᵀ)S−1

]}
=

1
2

(
S + 2µm∗T[1] − P̂∗1,1 − µµᵀ

)
, (V.43)

where P̂∗r,s = Φ∗[r,s] + m∗[r]m
∗ᵀ
[s] . Note that, S−1 ∈ SL

++, thus the derivative of (V.43)

needs to be projected into the space of symmetric matrices SL. Since an or-

thonormal basis of SL is {1
2(Ei,j + Ej,i), 1 6 i 6 j 6 L}, where Ei,j ∈RL×L with the
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(i, j)-element equal to one and all the rest elements being zero, it can be shown

that after the projection, (V.43) becomes

∂

∂S−1 L̂SJ(θ,q∗) =
1
2

(
S + µm∗T[1] + m∗[1]µ

ᵀ − P̂∗1,1 − µµᵀ
)

. (V.44)

Derivative w.r.t. µ

We have

∂

∂µ
L̂SJ(θ,q∗) =

∂

∂µ

[
µᵀS−1m∗[1] −

1
2

µᵀS−1µ
]
= S−1(m∗[1] − µ). (V.45)

Derivative w.r.t. A

We have

∂

∂A
L̂SJ(θ,q∗) =

∂

∂A

[ τ−1

∑
t=1

tr
(

P̂∗t,t+1Q−1A− 1
2

P̂∗t,t AᵀQ−1A
)]

=
∂

∂A

[
tr
(

ΨᵀQ−1A− 1
2

φAᵀQ−1A
)]

= (ΨᵀQ−1)ᵀ − 1
2

[
Q−T Aφᵀ + Q−1Aφ

]
= Q−1(Ψ− Aφ), (V.46)

where

φ =
τ

∑
t=2

P̂∗t−1,t−1, Ψ =
τ

∑
t=2

P̂∗t,t−1.
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Derivative w.r.t. Q−1

We have

∂

∂Q−1 L̂SJ(θ,q∗) =
∂

∂Q−1

[ τ−1

∑
t=1

tr
(

AP̂∗t,t+1Q−1 − 1
2

AP̂∗t,t AᵀQ−1

− 1
2

P̂∗t+1,t+1Q−1
)
+ (

τ − 1
2

) ln
∣∣∣Q−1

∣∣∣ ]
=

∂

∂Q−1

[
tr
(

AΨᵀQ−1 − 1
2

AφAᵀQ−1 − 1
2

ϕQ−1
)

+ (
τ − 1

2
) ln
∣∣∣Q−1

∣∣∣ ]
= ΨAᵀ +

1
2

[
(τ − 1)Q− AφAᵀ −ϕ

]
, (V.47)

where

ϕ=
τ

∑
t=2

P̂∗t,t. (V.48)

Again, since Q−1 ∈ S++, the partial derivative of (V.47) is projected into S , giving

∂

∂Q−1 L̂SJ(θ,q∗) =
1
2

[
ΨAᵀ + AΨᵀ − AφAᵀ −ϕ+ (τ − 1)Q

]
. (V.49)

Derivative w.r.t. C̃

We have

∂

∂C̃
L̂SJ(θ,q∗) =

∂

∂C̃

{
∑
k,t

[
ykt lnσ(C̃k,:m̃∗[t]) + (1− ykt) lnσ(−C̃k,:m̃∗[t])

]
− 1

8
tr
(
C̃Υ̃C̃ᵀ)}

= − 1
4

{
C̃Υ̃ +

τ

∑
t=1


σ(C̃1,:m̃∗[t])− y1t

...

σ(C̃D,:m̃∗[t])− yDt

 m̃∗[t]
ᵀ

}
, (V.50)
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where

Υ̃ =


τ

∑
t=1

Φ∗[t,t] 0

0 0

 .

V.E.3 The Fisher Vector for BDS Using ELBOJ J

In this section, we present the derivation of the Fisher vector for BDS us-

ing the tightest ELBO L̃J J(q∗,ξ∗;θ) of (III.49). This consists of computing partial

derivatives of L̃J J(q∗,ξ∗;θ) w.r.t. each of the BDS parameters θ= {S−1,µ, A, Q−1,C,u}.
The derivations of (V.27)-(V.30) are the same as in Section V.E.2. Here we

derive the result of (V.31). The first-order derivative of (V.26) w.r.t. C̃ is

∂

∂C̃

{
− 1

2

τi

∑
t=1

tr
[

R̃−1
t (C̃ ˆ̃P∗t,tC̃

ᵀ − 2ΓtC̃
ᵀ
)
]}

=
τi

∑
t=1

R̃−1
t (Γt − C̃ ˆ̃P∗t,t), (V.51)

where

ˆ̃P∗t,t =

 P̂∗t,t m∗[t]

m∗[t]
ᵀ 1

 , Γt = ρtm̃
∗
[t]
ᵀ, ρt =

1
4

[2y1,t − 1
λ(ξ∗1,t)

, · · · , 2yD,t − 1
λ(ξ∗D,t)

]ᵀ
.
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VI.A Introduction

Understanding human behavior is an important goal for computer vi-

sion [3]. While early solutions mostly addressed the recognition of simple move-

ments in controlled environments [17, 14, 142, 51], recent interest has been in

more challenging and realistic tasks [93, 130, 111, 85]. In the literature, these

tasks are commonly referred to as “action” or “activity” recognition. In this

work, we adopt the term “action” to denote behavior at the lowest level of the

semantic hierarchy, e.g., “run,” “jump,” or “kick a ball.’ The term “activity” is

reserved for behavior of higher level semantics, which can usually be described

as a sequence of actions. For example, the Olympic activity “clean and jerk”

involves the actions of “grasping a barbell,” “raising weights over the athlete’s

head,” and “dropping the bar.’ Activities can also be performed by multiple

subjects (i.e., be “collective”), or composed of “events” rather than actions (e.g.,

“wedding ceremony” composed of events such as “walking the bride,” “exchange

of vows,” “opening dance,” etc.).

Several of the prior works in action and activity recognition have proposed

variants of the bag of visual words (BoVW), which represents video as a collection

of orderless spatiotemporal features and serves as the low-level foundation for

many other action analysis frameworks. This family of representations have

been shown to consistently achieve state-of-the-art performance for tasks such

as action recognition and retrieval [166, 154, 165, 118, 110, 91].

Nevertheless, the BoVW has at least two important limitations. First, it

does not account for the fact that most activities are best abstracted as sequences

of actions or events. This is illustrated by the activity “packing a box” of Fig-

ure VI.1, which most humans would characterize as a sequence of the actions
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into

grab

out

drop

into

grab

out

drop

Packing Picking

Figure VI.1: The packing example. The actions “move hand into box” (into),
“grab object” (grab), “move hand out of box” (out), and “drop object” (drop) are
consisting with the activities of “packing a box” and “picking objects from a
box.’ In the absence of temporal modeling of event semantics, these activities
can be quite difficult to distinguish.

“move hand out of box - grab object - move hand into box - drop object.” In the

absence of an explicit representation of these semantics, it is up to the classifier

to learn the importance of concepts such as moving hands, grabbing or dropping

objects for the characterization of this activity. While these concepts are not im-

possible to learn from the evolution of low-level features, this is easier when the

classifier is given explicit supervision about the semantics of interest. In result,

semantic video modeling has recently began to receive substantial attention. For

example, the TRECVID multimedia event detection and recounting contest [114],

one of the major large-scale video analysis research efforts, explicitly states the

goal of not only predicting the event category (“detection”) of a video sequence,

but also identifying its semantically meaningful and relevant pieces (“recounting”).

Second, the BoVW captures little information about the temporal structure

of video. This limits its expressiveness, since a single set of actions (or events) can

give rise to multiple activities, depending on the order with which the actions are

performed. This is again illustrated in Figure VI.1, where the activity of “picking

objects from a box” differs from the activity of “packing a box” only in terms of
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the order of the actions described above, which is now “move hand into box -

grab object - move hand out of box - drop object.’ Hence, sophisticated modeling

of temporal structure can be critical for parsing complex activities. This is beyond

the reach of the BoVW.

Recently, there have been various attempts to address the two limitations

of the BoVW. On one hand, several authors have proposed richer models of the

temporal structure, also known as dynamics, of human activity [111, 94, 28, 46].

However, because modeling activity dynamics can be a complex proposition,

it is not uncommon for these models to require features specific to certain data

sets or activity classes [94, 28], or non-trivial forms of pre-processing, such as

tracking [95], per-class manual annotation [46], etc. On the other hand, inspired

by recent developments in image classification [89, 126], there has been a move

towards the representation of action in terms of intermediate-level semantic

concepts, such as attributes [101, 43]. This introduces a layer of abstraction that

improves generalization, enables modeling of contextual relationships [125],

and simplifies knowledge transfer across activity classes [101]. However, these

models continue to disregard the temporal structure of video.

In this thesis, we exploit the distinct characteristics of complex activities

at different temporal granularities, and propose a unified hierarchy for repre-

senting these variabilities of human behavior, by combining all these properties

via modeling and encoding the dynamics of human activities in the space of attributes.

The idea is to define each activity as a sequence of semantic events, e.g., defining

“packing a box” as the sequence of the action attributes “remove (hand from box),”

“grab (object),” “insert (hand in box),” and “drop (object).’ This semantic-level

representation is more robust to confounding factors, such as diversity of grabbing

styles, hand motion speeds, or camera motion, than dynamic representations
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based on low-level features. It is also more discriminant than semantic representa-

tions that ignore dynamics, i.e., that simply record the occurrence (or frequency)

of the action attributes “remove,” “grab,” “insert,” and “drop.’ We already saw

that, in the absence of information about the sequence in which these attributes

occur, the “packing a box” activity cannot be distinguished from the “picking

from a box” activity.

To implement this idea, we present novel solutions to the two major

technical challenges of using attribute dynamics for activity recognition. The

first is the modeling of attribute dynamics itself. As usual in semantics-based

recognition [101], video is represented in a semantic feature space, where each

feature encodes the probability of occurrence of an action attribute at each time

step. We introduce a generative model, the binary dynamic system (BDS), to learn

both the distribution and dynamics of different activities in this space. The BDS

is a non-linear dynamic system that combines binary observations with a hidden

Gauss-Markov state process. It can be interpreted as either 1) a generalization of

binary principal component analysis (binary PCA) [139], which accounts for data

dynamics; or 2) an extension of the classical linear dynamic system (LDS) to a

binary observation space.

The second is to account for non-stationary video dynamics. For this,

we embed the BDS in the BoVW representation, modeling video sequences as

orderless combinations of short-term video segments of characteristic semantic dy-

namics. More precisely, videos are modeled as sequences of short-term segments

sampled from a family of BDSs. This representation, the bag of words for attribute

dynamics (BoWAD), is applicable to more complex activities, e.g., “moving objects

across two boxes” which combines the event sequences of “picking objects from

a box” and “packing a box,” with potentially other events (e.g., “inspecting ob-
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ject”) in between. The BoWAD is shown to cope with the semantic noise, content

irregularities, and intra-class variation that prevail in video of complex high-level

events. These are further complemented by the discriminating feature represen-

tation for activity classification, denoted vector of locally aggregated descriptors for

attribute dynamics (VLADAD), inspired by the recent success of Fisher vectors

in image classification [119, 84, 30, 147], which is based on the aggregation of

the derivatives of a variational lower-bound of the log-likelihood over attribute

sequences.

VI.B Related Work

Many approaches to action recognition have been proposed in the last

decades [3, 162]. Early methods aimed to detect a small number of short-term

atomic movements in distractor-free environments. These methods relied exten-

sively on operations such as tracking [113, 19, 105], or filtering [17, 121, 174, 29],

that do not generalize well to more complex environments.

Over the last decade, there has been an increased focus on effective and

scalable automatic analysis of video involving complicated motion, distractor-

ridden scenes, complex backgrounds, unconstrained camera motion, etc. Var-

ious representations have been proposed to address these challenges, includ-

ing BoVW [142, 92], spatio-temporal pyramid matching [93, 90], decomposable

segments [111, 47], trajectories [103, 74, 164, 165], attributes [101], fusion with

depth-maps [176], holistic volume encoding [51, 130, 144], neural networks

[73, 148, 109, 167], and so forth. In this context, the BoVW and its variants

have consistently achieved state-of-the-art performance for tasks like action

recognition and retrieval, specially when combined with informative descriptors
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[92, 166, 83, 165] and advanced encoding schemes [93, 154, 117, 143]. In fact,

even sophisticated deep learning models, which capture hierarchical structure

and have obliterated the performance of the state of the art in areas such as

image and speech analysis [36, 132, 153], have failed to match the most recent

BoVW schemes based on hand-crafted features [117, 118, 110, 91], in the context

of action recognition from video [148, 109, 167]1.

The main justification for the robustness of the BoVW, i.e., that it reduces

video to an orderless collection of spatiotemporal descriptors, also limits the

applicability of this representation to fine-grained activity discrimination, where

it is important to account for precise temporal structure. A number of approaches

have been proposed to characterize this structure. One possibility is to represent

activities in terms of limb or torso motion, spatiotemporal shape models, or

motion templates [51, 63]. Since they require detection, segmentation, tracking,

or 3D structure recovery of body parts, these representations can be fragile.

A more robust alternative is to model the temporal structure of the BoVW.

This can be achieved with generalizations of popular still image recognition

methods. For example, Laptev et al. extend pyramid matching to video, using

a 3D binning scheme that roughly characterizes the spatio-temporal structure

of video [93]. Niebles et al. employ a latent support vector machine (SVM) that

augments the BoVW with temporal context, which they show to be critical for

understanding realistic motion [111]. These approaches have relatively coarse

modeling of dynamics. More elaborate models are usually based on genera-

tive representations. For example, Laxton et al. model a combination of object

1There is an ongoing debate on how deep architectures can capture long-term low-level
motion information. While early models failed to achieve competitive performance [73, 81],
recent works [148, 109, 167] show promising results, albeit still inferior to those of the best
hand-crafted features [117, 118, 110, 91]. It is worth noting that this issue is orthogonal to the
contributions of this work, since the proposed method is built on a space of attribute responses
which could be computed with a convolutional neural network (CNN).
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contexts and motion sequences with a dynamic Bayesian network [94], while

Gaidon et al. reduce each activity to three atomic actions and model their tem-

poral distributions [46]. These methods rely on activity-class specific features

and require detailed manual supervision. Alternatively, several researchers have

proposed to model BoVW dynamics with LDSs. For example, Kellokumpu et al.

combine dynamic textures [39] and local binary patterns [82], Li et al. perform

a discriminant canonical correlation analysis on the space of activity dynamics

[95], and [28] map frame-wise motion histograms to a reproducing kernel Hilbert

space, where they learn a kernel dynamic system (KDS).

Due to their success in areas like handwriting [53] and speech recogni-

tion [52], recurrent neural networks (RNN) have recently started to receive sub-

stantial attention for action recognition. In this context, they are usually learned

from features extracted with a low-level visual representation (BoVW, CNN, etc).

For example, Baccouche et al. use an RNN to learn temporal dynamics of either

hand-drafted [6], or CNN [7] features. More recently, Donahue et al. combine

a CNN and the long short-term memory (LSTM) model of [60] to optimize both

the low-level visual activation and dynamic components of an action recognition

system [38]. Alternatively, Ng et al. study temporal aggregation strategies for

video classification by either pooling over time or using LSTMs over frame-wise

CNN activations [109]. So far, RNN-based methods for action recognition have

failed to outperform even approaches without temporal order modeling, e.g.,

the convolutional pooling of [109] or the two stream method of [148]. A major

obstacle to these approaches is temporal scalability. Since the temporal depth

of a RNN is linear in the number of input frames, most methods operate on a

small number of video frames, e.g., 9 frames in [6], a few seconds in [7], 16 and

30 frames for [38] and [109], respectively. This limits discrimination for complex,
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longer-term, activities. Finally, current RNNs model the entire content of a video

sequence. This is problematic when the video contains sub-regions that do not

depict the specific activity of interest, a common occurrence for open-source

videos of complex activities.

Recent research in image recognition has shown that various limitations

of the BoVW are overcome by representations of higher semantic level [126].

The features that underly these representations are confidence scores for the

appearance of pre-defined visual concepts in images. These can be object at-

tributes [89], object classes [124, 122, 70], contextual classes [125], or generic

visual concepts [123]. Lately, semantic attributes have been used for action recog-

nition [101, 72], demonstrating the benefits of mid-level semantic representations

for the analysis of complex human activities. However, all these representations

ignore the temporal structure of video, representing actions as orderless feature

collections and reducing an entire video sequence to an attribute vector. For this

reason, we denote them holistic attribute representations.

The evolution of semantic concepts has not been thoroughly exploited

as a clue for activity understanding, although there have been a few efforts

in this direction since our early work of [97]. For example, hidden Markov

models (HMM) have been employed to capture the temporal structure of the

projection of a video sequence into a space of clusters of visual features [155] or

a space of supervised attribute detectors [151]. [11] have instead proposed to

represent complex activities by the spectrum (or some other harmonic signature)

of a model of attribute dynamics derived from the control literature. Finally,

[152] extract discriminative segments from the video and characterize them by

temporal transitions of attribute scores.
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VI.C Activity Representation via Attribute Dynam-

ics

In this section, we discuss the representation of activities with attribute

dynamics.

VI.C.1 Action Attributes

Attribute representations are members of the class of semantic represen-

tations [123, 101] for image and video. These are representations defined on

feature spaces with explicit semantics, i.e., where features are visual concepts,

scene classes, etc. Images or video are mapped into these spaces by classifiers

trained to detect the semantics of interest. For attribute representations, these are

binary detectors of video attributes {ck}D
k=1 that map a video x ∈ X into a binary

vector

y = [y1, · · · ,yD]
ᵀ ∈ {0,1}D, (VI.1)

indicating the presence/absence of each attribute in x. Classifier output yk is a

Bernoulli random variable, whose probability parameter πk(x) is a confidence

score for the presence of attribute ck in x. This is usually an estimate of the

posterior probability of attribute c given video x, i.e., πc(x) = p(c|x). The semantic

space S is the space of such scores, defined by

π : X → S = [0,1]K, π(x) = (π1(x), · · · ,πK(x))ᵀ. (VI.2)
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The benefits of attribute representations for recognition, namely a higher level of

abstraction (which enables better generalization than appearance-based represen-

tations), robustness to classification errors, and ability to account for contextual

relationships between concepts, have been previously documented in [89, 125,

115, 101, 72].

VI.C.2 Temporal Structure in Attribute Space

Since existing attribute representations do not account for temporal struc-

ture, they have limited applicability to video analysis. Temporal structure cannot

be captured by representations that are either holistic, such as (VI.2), or reduce

video to an orderless collection of instantaneous descriptors, such as histograms.

We propose to overcome this problem by introducing models of the dynamics, i.e.,

temporal evolution, of video attributes. This relies on the mapping of each video

into a sequence of semantic vectors

Π = {πt(x)} ⊂ S , (VI.3)

where πtk(x) is the confidence score for presence, in x, of attribute k at time t.

These scores are obtained by application of attribute detectors to a sliding video

window. Fig. VI.2 motivates the modeling of attribute dynamics, by depicting

two activity categories (“long jump” and “hurdle race”) that instantiate the

same attributes with roughly equal probabilities, but span two very different

trajectories in S . While hurdle racing involves a rhythmic transition between

short patterns of racing, jumping, and landing, a long jump starts with a longer

running sequence, followed by a single jump, and ends with a landing.

It is important to distinguish short- and long-term dynamics. The charac-
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terization of short-term dynamics can substantially enhance the expressiveness

of a video model. For example, decomposing the activity “long-jump” into

the short term events “run-run,” “run-jump” and “jump-land,” is sufficient to

discriminate it from the activity “triple-jump,” which is composed of short-term

events “run-jump,” “jump-jump” and “jump-land.’ The presence (or absence) of

the “jump-jump” segment is the essential difference between the two activities,

which are otherwise very similar. In this work, we capture these short-term

dynamics with a dynamic Bayesian network, the binary dynamic system (BDS),

which extends classical linear dynamical systems [131] to semantic observations.

Long-term temporal structure, on the other hand, can be less predictable,

since attributes of complex activities are highly non-stationary. There are at least

three major sources of non-stationarity. First, complex activities are frequently

composed of atomic actions with different dynamics. For example, the “wedding

ceremony” sequences of Fig. VI.3 are composed of several events (e.g., “dancing,”

“cutting the cake,” or “bouquet throwing”). Since the dynamics of these events

can be quite distinct, it is very challenging to capture the long-term dynamics

of the activity with a single model. Second, and more importantly, the training

data available is usually too sparse to cover the intra-class variations of high-

level activities. For example, while some wedding videos involve scenes of an

honeymoon trip, most do not. In this case, attempting to model long-range

dynamics is prone to overfitting. Finally, the most discriminant video segments

for event recognition are frequently embedded in video that is only marginally

informative of the activity class. For example, the discriminant (for weddings)

“bouquet toss” sequence can be surrounded by “dancing” sequences (which

appear equally in wedding and birthday videos). The ability to identify these

discriminant segments, while ignoring the surrounding “action noise” (non-



123

00
.2

0
.4

0
.6

0
.8

1

Attribute Score

t
00
.2

0
.4

0
.6

0
.8

1

Attribute Score

!
"
#
$
%
&

'()*+&,&()*+&,&-./01&

'()*+&,&-./02&-./01&

'&-./02&-./0&,&3"/453).*61&

'&-./0&,&3"/453).*6&,&47645&()6451&

t
t

⇔

!
"
#
$%
$

⇔

!
"
#
$%
$

⇔

!
"
#
$%
$

⇔

!
"
#
$%
$

!
"#
$%

&'
(
)*
&"
+#
,%

-+
(
.%)/
,)
*%!
",
)*
%

0
12
1/
3
4

&.
*1
/
3
5
'
"
*0
%

Π
(1

)
Π

(2
)

Π
(3

)
Π

(4
)

Fi
gu

re
V

I.
4:

Il
lu

st
ra

ti
on

fo
r

ba
g

of
w

or
d

s
fo

r
at

tr
ib

u
te

d
yn

am
ic

s.
B

oW
A

D
re

p
re

se
nt

at
io

n
of

a
vi

d
eo

of
th

e
ac

ti
vi

ty
“d

iv
in

g-
sp

ri
ng

bo
ar

d
”

is
ex

em
p

lifi
ed

.
(T

op
)

vi
d

eo
se

qu
en

ce
.

(M
id

d
le

)
T

he
cl

as
si

c
(h

ol
is

ti
c)

re
p

re
se

nt
at

io
n

of
th

e
vi

de
o

on
a

sp
ac

e
of

fo
ur

at
tr

ib
ut

es
(r

ep
re

se
nt

ed
by

fo
ur

co
lo

rs
)i

s
sh

ow
n

in
th

e
le

ft
.

T
he

p
ro

p
os

ed
re

p
re

se
nt

at
io

n
of

th
e

vi
d

eo
as

a
tr

aj
ec

to
ry

in
th

e
at

tr
ib

u
te

sp
ac

e
(f

ou
r

co
lo

re
d

fu
nc

ti
on

s)
is

sh
ow

n
at

th
e

ce
nt

er
.

T
he

tr
aj

ec
to

ry
is

sp
lit

in
to

ov
er

la
p

p
in

g
so

rt
-t

er
m

se
gm

en
ts

.
(B

ot
to

m
)

ea
ch

se
gm

en
t

is
as

si
gn

ed
to

th
e

B
D

S,
in

a
p

re
vi

ou
sl

y
le

ar
ne

d
d

ic
ti

on
ar

y,
th

at
be

st
ex

p
la

in
s

it
.

D
ic

ti
on

ar
y

BD
S’

s,
de

no
te

d
W

A
D

s,
ar

e
m

od
el

s
of

sh
or

t-
te

rm
be

ha
vi

or
,s

uc
h

as
“w

al
k-

w
al

k-
ju

m
p,

”
“w

al
k-

ju
m

p-
ju

m
p,

”
“j

u
m

p-
ju

m
p-

so
m

er
sa

u
lt

”
an

d
“j

u
m

p-
so

m
er

sa
u

lt
-

en
te

r
w

at
er

.’
T

he
ac

ti
vi

ty
is

re
pr

es
en

te
d

by
a

B
oW

A
D

,w
hi

ch
is

a
hi

st
og

ra
m

of
as

si
gn

m
en

ts
of

se
gm

en
ts

to
W

A
D

s.



124

informative segments) are critical for robust event recognition.

These observations suggest that the modeling of dynamics involves a

trade-off between gains in discrimination v.s. potential for overfitting. Modeling

short-term dynamics increases discrimination with small overfitting potential.

However, the latter increases with the temporal support of the video sequences.

In result, there is an optimal support, beyond which the benefits of dynamic

models start to vanish. This suggests the combination of dynamic models,

such as the BDS, for short-term dynamics and representations that may be less

discriminant but more robust, such as the BoVW, for long-term dynamics. To

accomplish this goal, we propose to encode activity sequences with a BoVW

representation that uses the BDS as descriptor of short-term attribute dynamics.

The proposed video representation is illustrated in Fig. VI.4. A video x is

split into segments {s(i)}N
i=1 of τi frames (possibly overlapping in time)2. The at-

tribute mapping of (VI.3) is then applied to each segment, producing an attribute

sequence Π(i) = {πt}ti+τi−1
t=ti

, where ti is the starting time of the i-th segment. x is

finally represented by the bag of attribute sequences (BoAS) {Π(i)} shown in the

orange box. This generalizes the BoVW image representation. A dictionary of

representative BDSs, denoted words for attributes dynamics (WAD), is learned by

clustering a collection of BoAS from a set of training attribute sequences. The

WAD dictionary is then used to encode the attribute sequences extracted from x

as a feature vector for final video classification. This is implemented by either

1) the histogram of WAD counts, denoted a bag of words for attribute dynamics

(BoWAD), or 2) a descriptor of the first order statistics of attribute sequences after

clustering with a WAD mixture, denoted the vector of local aggregated descriptors

2The optimization of the lengths {τi} of the video segments {s(i)} is left for further research.
In this work, we simply considered segments of equal length {τi} = τ,∀i, chosen from a finite
set of segment lengths τ, selected so as to achieved good empirical performance on the datasets
considered. The specific values of τ used are discussed in the experimental section.
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for attribute dynamics (VLADAD).

VI.D Models of Attribute Dynamics

In this section, we address the modeling of the dynamics of attribute

sequences. We start by considering binary attributes and then generalize the

discussion to account for confidence scores.

VI.D.1 Soft Binary PCA

By mapping each video into a sequence of vectors {πt} of attribute prob-

abilities, the semantic representation of (VI.3) is much richer than a sequence

of binary attribute vectors yt. This, however, prevents the direct application of

binary PCA. A solution is nevertheless possible if, instead of the conventional

ML criterion, we resort to the maximization of the expected log-likelihood of the

binary observations yt. This equates parameter learning to the optimization

problem

θ∗ = arg max
θ

〈lnL(θ)〉p(y;π) (VI.4)

= arg max
θ

〈ln p(y;θ)〉p(y;π) . (VI.5)

Since 〈yt〉p(y;π) = πt, it follows from (IV.2) that

〈L〉p(y;π) = ∑
k,t

[
πkt lnσ(Θkt) + (1− πkt) lnσ(−Θkt)

]
, (VI.6)

and (VI.5) can be solved with the binary PCA algorithm.

It should be noted that this solution is identical to the ML estimate of
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binary PCA in the case of infinite data since, by the law of large numbers,

1
N

N

∑
i=1

ln p(y(i);θ) −−−→
N→∞

〈ln p(y;θ)〉p(y;π) ,

where {y(i)}N
i=1 are N independent and identically distributed (i.i.d.) examples from

from p(y;π). The solution of (VI.5) also minimizes the KL divergence between

p(y;π) and the model p(y;θ), since

KL(p(y;π)||p(y;θ)) = 〈ln p(y;π)〉p(y;π) − 〈ln p(y;θ)〉p(y;π) > 0, (VI.7)

and the first term is independent of θ.

VI.D.2 Variational Inference for Expected Log-likelihood

The variational setting for learning BDS parameters is slightly different

from the standard variational setting because, in (VI.5), the goal is to maxi-

mize the expected log-likelihood with regards to a reference distribution p̃(y) =

p(y;π), i.e.

〈lnL(θ,y)〉 p̃(y) = 〈ln p(y;θ)〉 p̃(y) . (VI.8)

In this case

〈lnL(θ,y)〉 p̃(y) = L (θ,q) + 〈KL(q(x)||p(x|y;θ))〉 p̃(y)
> L (θ,q) (VI.9)
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with lower bound

L (θ,q) = 〈L (θ,y,q)〉 p̃(y) (VI.10)

=
∫

x
q(x) 〈ln p(y, x;θ)〉 p̃(y) dx + Hq(X), (VI.11)

where Hq(X) = −
∫

x q(x) lnq(x)dx is the entropy of X under distribution q(x).

This bound is tightest at

q∗(x) = arg max
q∈Dq

L (θ,q) (VI.12)

= arg min
q∈Dq

〈KL(q(x)||p(x|y;θ))〉 p̃(y) . (VI.13)

Note that, by Jensen’s inequality,

L (θ,q∗) = max
q∈Dq
〈L (θ,y,q)〉 p̃(y) (VI.14)

6

〈
max
q∈Dq

L (θ,y,q)

〉
p̃(y)

(VI.15)

=
〈
L (θ,y,q∗y)

〉
p̃(y)

. (VI.16)

Hence, the tightest bound of the expected log-likelihood lower bounds the

average tightest log-likelihood bounds across observation sequences. Intuitively,

(VI.14) lower bounds the log-likelihood over all samples from p̃(y) that share the

same hidden variable, distributed according to q∗(x). On the other hand, (VI.16)

uses the distribution q∗y(x) that best explains each sample y.
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Figure VI.5: Synthetic sequences of binary dynamic systems. Top: key frames
from activity sequence class “walk- pjump-wave1-wave2-wave2” in Syn-4/5/6.
Bottom: score of “two-arms-motion” attribute. True scores in black, and scores
sampled from BDS (red) and KDS (blue). Also shown is the KL-divergence
between sampled and true scores, for both models.

VI.E Experiments: Event Recognition

In this section, we discuss experiments designed to evaluate the perfor-

mance of the proposed BDS, BoWAD, and VLADAD. Three benchmarks from

various perspectives are adopted to assess the behavior of these approaches: the

Weizmann Complex Activity is a synthetic benchmark with comprehensive simu-

lated challenges; Olympic Sports contains weakly cropped and aligned complex

sport sequences; and Multimedia Event Detection features high level events with

instances from open-source repositories.

VI.E.1 Attribute Classifiers

The VLADAD can be computed for any implementation of attribute

classifiers. Since the goal was not attribute detection per se, we used two popular

methods to produce attribute sequences. The first attribute classifier extracted
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Figure VI.6: Fitting of attribute data. Log KL-divergence between original and
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for PCA, KPCA, and binary PCA are shown.

space-time interest points (STIP) of [92] and computed at each interest point a

descriptor combining a histogram of oriented gradients (HoG) and a histogram

of optical flow (HoF). The second classifier was based on the improved trajectory

feature (ITF) of [165], using a descriptor composed of HoG, HoF, frame-wise

trajectory (FWT), and motion boundary histogram (MBH), which has been shown

to achieve state-of-the-art performance in action recognition even superior than

features by deep learning [81, 118, 148, 167]. All features were extracted with the

binary or source code provided by its authors 3.

In all experiments, attribute detection was based on the BoVW. For each

descriptor, a codebook of size V was learned by k-means, over the entire training

set, and used to quantize features. Different ITF descriptors were processed

separately and merged by averaging kernel matrices during prediction. The

3 Binary for STIP available at http://www.di.ens.fr/˜laptev/download; source code for ITF
available at http://lear.inrialpes.fr/˜wang/download.

http://www.di.ens.fr/~laptev/download
http://lear.inrialpes.fr/~wang/download
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attribute annotations of [101] were used for Weizmann and Olympic Sports and

those of [10] for MED. Appendix VI.I.2 provides details on attribute definitions

and annotations. On Weizmann, attribute detectors were implemented with a

linear SVM, using LIBSVM [26] with probability outputs. However, we found

this to have scalability problems for the larger Olympics and MED datasets. On

these datasets attribute classifiers were logistic regressors, implemented with

LIBLINEAR [42]. To maximize attribute detection accuracy, while retaining

the efficiency of linear classification, we used an additive kernel mapping of

the histogram intersection kernel (HIK), as suggested in [160]. The attribute

trajectory {πt} of a video sequence was computed with a sliding window, where

attribute detectors predicted attribute scores at each window anchoring position.

An holistic attribute vector, encoding the presence of attributes in the entire video

sequence, was also constructed by max-pooling {πt} over time.

VI.E.2 Weizmann Complex Activity

The first set of experiments aimed to systematically compare the ability of

different models to capture the dynamics of attribute sequences. A non-trivial

difficulty of such a study is the need for datasets with classes that 1) differ only in

terms of attributes dynamics, and 2) enable a quantification of these differences.

It is critical that such datasets do not include discriminant information beyond

attribute dynamics, such as discriminant scene backgrounds, objects, or scene

durations. Unfortunately, these conditions are not met by existing action datasets.

For example, the “making a sandwich” activity of the MED dataset is the only

one to include the “sandwich” object. This enables the use of object recognition

as a proxy for action recognition, an alternative that would not be viable if the

dataset also contained an “eating a sandwich” activity. To avoid these problems,
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we assembled a synthetic dataset of complex sequences, which were synthesized

from the atomic actions of the popular Weizmann dataset [51].

Weizmann contains 10 atomic action classes (e.g., skipping, walking) per-

formed by 9 people and was annotated with 30 low-level attributes (e.g., “one-

arm-motion”) by [101]. Attribute sequences were computed over 30-frame

sliding video windows with 10-frame stride. STIP features were used with

a 1000-word vocabulary for low-level descriptor quantization. The availability

of attribute ground truth for all atomic actions enables learning of clean attribute

models. Hence, performance variations can be attributed to the quality of the

attribute-based inference of the different approaches.

Three subsets of synthetic sequences were created by concatenating Weiz-

mann actions (see Appendix VI.I.1 for some examples). These subsets vary in the

variability and complexity of temporal structure of their video sequences. They

target the study of different hypotheses regarding the role of dynamics in action

recognition. The first, denoted “Syn-4/5/6” evaluates the ability of different

models to capture dynamics of varying complexity, when all video segments

are informative of the action class, i.e., when the dynamics have no noise. The

remaining two evaluate robustness to “noisy dynamics.’ “Syn20× 1” consists

of actions of homogeneous dynamics, which are buried in additional video seg-

ments of dynamics uncharacteristic of the action class. “Syn10× 2” consists of

discontinuous actions of homogenous dynamics, which are interleaved with

segments of “noisy dynamics.’

Complex Dynamics

In the first subset, “Syn-4/5/6”, a sequence of degree n (n = 4,5,6) is

composed of n atomic actions, performed by the same person. The row of images
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at the top of Figure VI.5 presents keyframes of an activity sequence of degree

5, composed by the atomic actions “walk,” “pjump,” “wave1,” “wave2,” and

“wave2.’ The black curve (labeled “Sem. Seq”) in the plot at the bottom of the

figure shows the score of the “two-arms-motion” attribute over time. 40 activity

categories were defined per degree n (total of 120 activity categories), and the

dataset was assembled per category, containing one activity sequence per person

(9 people, 1080 sequences in total). Overall, the activity sequences differ in the

number, category, and temporal order of atomic actions.

We started by comparing the binary PCA that underlies the BDS to the

PCA and KPCA decompositions of the LDS and KDS. In all cases, a set of

attribute score vectors {πt} was projected into the low-dimensional PCA sub-

space, the reconstructed score vectors {π̂t} were computed and the KL diver-

gence between B(y,πt) and B(y, π̂t) was measured. The logit kernel K(π1,π2)

= σ−1(π1)
ᵀσ−1(π2), where σ−1(·) is the element-wise logit function, was used

for KPCA. Fig. VI.6 shows the average log-KL divergence, over the entire dataset,

as a function of the number of PCA components used in the reconstruction.

Binary PCA outperformed both PCA and KPCA. The improvements over KPCA

are particularly interesting, since the latter uses the logistic transformation that

distinguishes binary PCA from PCA. This is explained by the Euclidean sim-

ilarity measure that underlies the assumption of Gaussian noise in KPCA, as

discussed in Section IV.A.2.

To gain some more insight on the different models, a KDS and a BDS were

learned from the 30 dimensional attribute score vectors of the activity sequence

in Figure VI.5. A new set of attribute score vectors were then sampled from each

model. The evolution of the scores sampled for the “two-arms-motion” attribute

are shown in the figure (in red/blue for BDS/KDS). Note how the scores sampled
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Table VI.1: Accuracy on Syn-4/5/6.

method accuracy

BoVW
[93]

(x1y1t1) 57.8%
(x1y1t3) 78.8%
(x1y1t6) 92.5%

holistic attribute 72.6%
DTM [13] 84.6%
ToT [168] 88.2%
KDS [28] 90.2%

BDS 94.8%

from the BDS approximate the original attribute scores better than those sampled

from the KDS. This was quantified by computing the KL-divergences between

the original attribute scores and those sampled from the two models, which are

also shown in the figure.

We next evaluated the benefits of different representations of dynamics

for activity recognition. Recognition rates were obtained with a 9-fold leave-

one-out-cross-validation (LOOCV), where, per trial, the activities of one subject

were used as test set and those of the remaining 8 as training set. We compared

the performance of classifiers based on the KDS and BDS to those of a BoVW

classifier with temporal pyramid (TP) matching [93], a holistic attribute classifier

that ignores attribute dynamics, the dynamic topic model (DTM) [13] and the

topic over time (ToT) model [168] from the text literature. For the latter, topics

were equated to the activity attributes and learned with supervision (using

the SVMs for attribute detection). Unsupervised versions of the topic models

had worse performance and are omitted. Classification was performed with

Bayes’ rule for topic models, and a nearest-neighbor classifier for the remaining

methods. BDS distances were measured with (V.8), while for the KDS we adopted

the logit kernel. The dimension of the BDS state space was 5. The X 2 distance
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was used for all BoVW and holistic attribute classifiers. In an attempt to match

the pooling mechanism of temporal pyramid matching to the structure of the

synthetic Weizmann sequences, we considered a variant with 6 temporal bins.

This is denoted BoVW-x1y1t6.

The accuracy of all classifiers is reported in Table VI.1. BDS achieved the

best performance, followed by BoVW-x1y1t6, KDS, the dynamic topic models,

and BoVW-x1y1t1 and holistic attribute. Note the large difference between the

holistic attribute and the best dynamic model (≈ 22%). This shows that while

attributes are important (14.8% improvement over BoVW without temporal

pooling), they are not the whole story. Problems involving fine-grained activity

classification, i.e., discrimination between activities composed of similar actions

executed in different sequence, requires modeling of attribute dynamics. This is

reflected by both the improvement of BoVW with x1y1t3 and x1y1t6 temporal

pyramids over naive BoVW, and that of models of attribute dynamics over the

holistic attribute vector. Among the dynamic models, the BDS outperformed the

KDS, the topic models DTM and ToT, and BoVW with pyramids x1y1t3/t6. It is

also worth noting the sensitivity of pyramid matching to the number of temporal

bins, with performance varying between 57.8% (x1y1t1) and 92.5% (x1y1t6).

Noisy dynamics

The remaining two datasets evaluated the robustness of the different meth-

ods to noise, poor segmentation, and alignment. The second dataset, “Syn20×1”

was composed of activity classes of large variability. Each activity was defined as

a sequence of 20 consecutive atomic actions. This sequence was inserted at a ran-

dom temporal location of a larger sequence of 40 atomic actions. The remaining 20

actions in the larger sequence were randomly selected from Weizmann. The third
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Table VI.2: Accuracy on Syn20×1 and Syn10×2.

method Syn20×1 Syn10×2

BoVW
[93]

(x1y1t1) 23.3% 28.9%
(x1y1t3) 36.7% 31.1%
(x1y1t6) 55.6% 24.4%

holistic attribute 17.8% 16.7%
DTM [13] 49.3% 46.5%
ToT [168] 57.2% 55.9%
KDS [28] 61.6% 63.1%

BDS 64.4% 65.6%

BoWAD (BMC) 100% 100%
(MDS-kM) 100% 98.9%

VLADAD (BMC) 100% 100%
(MDS-kM) 100% 100%

dataset, “Syn 10×2,” tested the detection of discontinuous activities. Each activity

was defined by two subsequences, each with 10 consecutive atomic actions. The

two subsequences were randomly inserted at non-overlapping locations of the

larger (40 atomic actions) sequence. For both sets, 20 activities were synthesized

for each of 9 subjects, producing 180 sequences per set.

In addition to the classifiers of Table VI.1, both the BoWAD and VLADAD

were evaluated on these datasets. For both, short-term attribute sequences

consisted of attribute vectors from 12 consecutive windows. The dimension of

the BDS state space was again 5. WAD dictionaries were learned with both BMC

and the MDS-kM algorithm of [128]. One-versus-all SVMs were used for BoVW

and BoWAD classification, using a χ2 kernel. VLADAD was implemented with

a linear kernel, KDS and BDS used the kernel K(Ωa,Ωb) = exp(− 1
γ d2(Ωa,Ωb))

where d is the distance used in Syn-4/5/6. These kernels achieved the best

performance for each of the methods in our preliminary experiments.
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Table VI.3: Mean average precisions on Olympic Sports.

method w/o LA fusion w/ LA fusion

STIP ITF STIP ITF

BoVW
[93]

(x1y1t1) 59.0% 83.7% - -
(x1y1t3) 53.2% 81.6% - -

DMS [111] 62.5% - - -
holistic attribute 62.6% 82.1% 64.2% 84.9%
VD-HMM [155] 66.8% - - -
HMM-FV [151] 65.3% 84.7% 66.4% 86.7%

CTR [11] 64.9% 85.5% 67.1% 87.3%

BDS 67.8% 86.1% 68.7% 88.6%

BoWAD (BMC) 73.5% 90.3% 74.9% 91.2%
(MDS-kM) 71.2% 88.2% 72.6% 89.8%

VLADAD (BMC) 76.9% 91.7% 77.2% 93.1%
(MDS-kM) 71.7% 90.6% 73.4% 91.4%

Table VI.2 summarizes the performance of the different methods. Both

BoVW and the holistic attribute vector performed poorly. Note, in particular,

how BoVW-x1y1t6 now underperformed the two other implementations of tem-

poral pyramid matching. This highlights the difficulty of designing universal

pooling schemes, that can withstand significant intra class variability. This prob-

lem also affected the dynamics models, which performed substantially worse

than in Table VI.1. While the BDS significantly outperformed the other meth-

ods, its performance was still lackluster. This is explained by the underlying

assumption of a single dynamic process, a severe mismatch on Syn20×1 and

Syn10×3, where the activities of interest are 1) not temporally aligned and 2) im-

mersed in irrelevant video content. It is thus not surprising that the BoWAD and

VLADAD achieved substantially better performance on these datasets, reaching

perfect classification. With respect to BoWAD clustering, both strategies achieved

excellent results, with BMC performing slightly better than MDS-kM. Overall,
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Table VI.4: Performance on Olympic Sports.

method mAP

[156] 82.9%
[69] 83.2%
[68] 85.3%
[98] 84.5%

[165] 91.1%
[78] 74.6%

[110] 92.3%
[91] 92.9%

VLADAD 93.1%

these results demonstrate the robustness of the proposed BoWAD and VLADAD

representations to intra-class variation and noise.

VI.E.3 Olympic Sports

The second set of experiments was performed on Olympic Sports [111].

This contains YouTube videos of 16 sport activities, with a total of 783 sequences.

Some activities are sequences of atomic actions, whose temporal structure is

critical for discrimination from other classes (e.g., “clean and jerk” v.s.

“snatch,” and “long-jump” v.s. “triple-jump”). Since the attribute labels of [101]

are only available for whole sequences, the attribute classifiers are much noisier

than in the previous experiment, degrading the quality of attribute models. We

followed the train-test split proposed by [111] and used per-category average

precision (AP) and mean AP (mAP) to measure recognition performance. In

all cases, low-level feature quantization was based on 4000-word codebooks,

learned with k-means. Attribute sequences were computed with a 30-frame

sliding window, implemented with a stride of 4 frames.

The proposed approaches were compared to BoVW-TP, the decomposable
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motion segments model (DMS) of [111], the hidden Markov model with latent

states of variable duration (VD-HMM) [155], the holistic attribute, and two

recent approaches that also model attribute dynamics: the HMM fisher vector

(HMM-FV) of [151] and the combined temporal representation (CTR) of [11].

Classification was performed with SVMs using a χ2 or Jensen-Shannon kernel

for histogram-based methods (BoVW, holistic attribute, BoWAD); SVMs using

a radial basis function (RBF) kernel Kα(i, j) = exp(− 1
α d2(i, j)) for HMM-FV and

CTR; a nearest neighbor classifier or SVM using the RBF kernel for BDS; and

a linear SVM for VLADAD. For each method, the best classifier parameters

were chosen by 4-fold cross-validation on the training set. The number of PCA

components L of the BDS was selected from {2,4,6,8}, and the length τ of the

attribute sequences of BoWAD and VLADAD from {4,6,8,10,12, 16} by cross-

validation on the training set.
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Figure VI.8: Mean average precision v.s. size of WAD dictionary on Olympic
Sports.

The performance of the different approaches is summarized in Table VI.34.
4Note that the version of Olympic Sports used in [111] is different from that released publicly.
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Several conclusions can be drawn. First, all models benefit strongly from the ITF

features. The increased performance of BDS, BoWAD, and VLADAD with these

features suggests that a more discriminant set of low-level features, and thus

cleaner attributes, can significantly simplify the problem of modeling of attribute

dynamics.

Second, the BDS again outperforms all other models. The gains are larger

over methods that do not account for dynamics (e.g., the holistic attribute vector)

but substantial even over the alternative models of attribute dynamics, such

as HMM-FV or CTR. This is likely due to the richer characterization of the

hidden state space by the BDS and its modeling of low-dimensional attribute

subspaces. An interesting observation is that BoVW-x1y1t3 underperforms the

vanilla BoVW significantly, reflecting the fact that its rigid temporal cells with

fixed temporal anchor points 1) are coarse for capturing finer structure within

each cell, and 2) cannot adapt to intra-class variation. This vulnerability of BoVW

with augmented “rigidity” to over-fitting is also confirmed by other works in

literature [90].

Third, the BDS gains are smaller than in Weizmann. This is due, in part,

to the increased difficulty of modeling dynamics because annotations are noisy

and, in part, to the nature of the dataset. While Weizmann requires fine-grained

temporal discrimination for most classes, this is not the case in Olympic. For

example, the holistic attribute vector suffices to discriminate classes that are very

distinctive, e.g., that have unique motion. An example is “diving platform 10m,”

which can be singled out by its distinctive patterns of fast downward motion.

This is visible in the per-category average-precision plot of Fig. VI.7, where the

holistic attribute vector performs very well for this class. On the other hand, finer

DMS performance on the latter was reported in [155].
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grained temporal analysis is required to distinguish between similar classes, e.g.,

“long-jump” v.s.“triple jump,” or “clean and jerk” v.s.“snatch.’ Fig. VI.7 clearly

shows that these classes 1) pose a greater challenge to previous methods, and 2)

lead to the largest gains by the BDS, BoWAD, and VLADAD.

Fourth, while the BDS performs quite well for classes with reasonably

well segmented and aligned sequences (e.g., “long jump”), the assumption of a

single dynamic process again limits its performance for categories with larger

variability (e.g., “snatch,” “clean and jerk,” “tennis serve,” etc). Both BoWAD

and VLADAD perform better in this case, improving BDS performance by 4%

to 9% overall. Fig. VI.7 shows that this improvement is particularly significant

for categories, such as “clean and jerk” and “tennis serve,” whose discriminant

events are scattered throughout the video sequence.

Fifth, regarding encoding schemes there is now a clear gap between

BoWAD (73.5% for STIP, 90.3% for ITF) and VLADAD (76.9% for STIP, 91.7% for

ITF). This confirms many previous observations for the effectiveness of Fisher

scores in image and video classification. Fig. VI.8 shows that the VLADAD gains

hold across a substantial range of WAD codebook size. Note that a 16-word

VLADAD codebook already has mAP (around 87%) superior to most methods in

Table VI.4. Similarly, we observed a consistent advantage of BMC over MDS-kM

clustering, with differences of 1% to 5% in mAP (see Table VI.3).

Sixth, Fig. VI.7 shows that even methods with low overall performance,

e.g., the holistic attribute vector, can have good performance for some classes.

This suggests that there is some complementarity in the different video repre-

sentations, and it may be beneficial to combine them [150, 154, 175]. We have

investigated this by combining representations based on low-level features, holis-

tic attributes, and dynamic modeling, using the late fusion scheme of [154], which
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uses the geometric mean of scores of different classifiers as the final prediction

score. The combination of multiple representations, denoted “LA fusion” in

Table VI.3), does not change the conclusions above. Again, the BDS outperforms

previous models of temporal structure, based on either low-level motion (DMS

and VD-HMM) or attributes (HMM-FV and CTR), the BoWAD outperforms the

BDS, and the VLADAD has top performance.

Seventh, all methods benefit from late fusion. This confirms that some

discriminant information might be discarded by attribute modeling (gains by

inclusion of low-level features) and holistic modeling can sometimes be useful.

However, the effect is small, with a gain less than 1% for most the best performing

methods.

Finally, Table VI.4 compares the VLADAD-BMC with ITF features and

late fusion to previous approaches in the literature. The proposed representation

achieves state-of-the-art performance on this dataset, surpassing the previous

best results by [165, 110, 91]. Note that all these three benchmarks are based

on ITF encoded with Fisher vector, which is a stronger baseline than ours (ITF

with vanilla BoVW). This enhancement could be incorporated into our attribute

detectors, potentially leading to even better performance.

VI.E.4 TRECVID-MED11

The third set of experiments used the 2011 TRECVID multimedia event

detection (MED11) open source data-set [114]. This is one of the most challenging

datasets for activity or event recognition due to 1) the vaguely defined high-

level event categories (e.g., “birthday party”); 2) the large intra-class variation in

terms of event composition (e.g., temporal duration, organization), stage setting,

illumination, cutting, resolution, etc; 3) large negative samples, and so forth.
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Table VI.5: Mean average precisions (in percentage) on MED11.

DEVT DEVO

method
w/o LA fusion w/ LA fusion w/o LA fusion w/ LA fusion

STIP ITF STIP ITF STIP ITF STIP ITF

random guess 0.98 0.37
BoVW

[93]
(x1y1t1) 15.70 32.68 - - 8.31 18.53 - -
(x1y1t3) 15.50 31.86 - - 9.66 18.92 - -

DMS [111] 5.72 - - - 2.52 - - -
holistic attribute 10.62 25.03 16.31 33.42 4.93 12.45 8.93 19.67
VD-HMM [155] 11.25 - - - 4.77 - - -
HMM-FV [151] 8.15 21.82 16.50 33.77 4.49 11.64 9.52 20.08

CTR [11] 9.46 22.42 17.14 33.61 4.62 11.08 9.61 19.72

BDS 6.75 16.72 16.33 33.49 3.67 9.21 9.16 19.21

BoWAD (BMC) 13.38 26.20 18.05 35.02 7.49 14.36 10.25 20.91
(MDS-kM) 12.70 25.08 17.37 34.11 6.92 13.68 9.94 20.30

VLADAD (BMC) 14.19 27.04 18.56 35.40 7.91 15.61 10.92 21.84
(MDS-kM) 13.41 26.16 17.93 34.62 7.33 14.84 10.15 20.89

We followed the protocol suggested by the TRECVID evaluation guidelines for

performance evaluation. Specifically, the event collection (EC) set was used

for training. EC contains 2,392 training samples of 15 high-level events (see

Table VI.6 for the full list), with 100-200 positive examples per event. Two

evaluation sets, DEV-T and DEV-O, were used for testing. DEV-T has 10,723

samples (370 hours of video in total), approximately 1% of which is from events 1-

5 and the remaining 99% are negative samples; while DEV-O has 32,061 samples

(1200 hours in total), with around 0.5% from events 6-15 and 99.5% negative

samples.

Attribute classification was based on 103 attributes defined by [10]. 8,000-

word codebooks were learned with k-means for low-level feature quantization.

Attribute scores were computed with a 180-frame sliding window and a 30-frame

stride. All classifier settings were as in Section VI.E.3, with the exception of the

length τ of attribute sequences for BoWAD and VLADAD, which was selected

from {5,10,15,20}, corresponding to roughly 5, 10, 15 and 20 seconds. To account
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Figure VI.10: Mean average precision v.s. size of WAD dictionary on MED11.

for the variability of instances from the same event, both the BoWAD histograms

and VLADAD were computed with different τ and concatenated into the feature

used for event prediction.

Table VI.5 summarizes the event detection performance of the different

methods. Most of these results are in line with those of the previous section. For

example, the VLADAD again outperformed the BoWAD, especially for small

codebook sizes. This is shown in greater detail in Fig. VI.10. Similarly, clustering

with the BMC again outperformed MDS-kM. Finally, Fig. VI.11 shows the APs of

VLADAD for different attribute sequence lengths τ. Not surprisingly, different



146

E
0
0
1

E
0
0
2

E
0
0
3

E
0
0
4

E
0
0
5

E
0
0
6

E
0
0
7

E
0
0
8

E
0
0
9

E
0
1
0

E
0
1
1

E
0
1
2

E
0
1
3

E
0
1
4

E
0
1
5

m
e
a
n

0

0
.1

0
.2

0
.3

0
.4

0
.5

Average Precision

 

 

 !
"

=
5

 !
"

=
1

0
 !

"
=

1
5

 !
 

=
2

0
a

ll

Fi
gu

re
V

I.
11

:
A

ve
ra

ge
pr

ec
is

io
n

of
V

LA
D

A
D

on
M

ED
11

.I
TF

is
us

ed
.



147

0

0
.1

0
.2

0
.3

0
.4

0
.5

Average Precision

 

 

E
0

0
1

E
0

0
2

E
0

0
3

E
0

0
4

E
0

0
5

E
0

0
6

E
0

0
7

E
0

0
8

E
0

0
9

E
0

1
0

E
0

1
1

E
0

1
2

E
0

1
3

E
0

1
4

E
0

1
5

c
h

a
n

c
e

B
o

V
W

 (
x
1

y
1

t1
)

B
o

V
W

 (
x
1

y
1

t3
)

D
M

S
V

D
−

H
M

M
h

o
li
s
ti
c
 a

tt
ri
b

u
te

H
M

M
−

F
V

C
T

R
B

D
S

B
o

W
A

D
V

L
A

D
A

D

Fi
gu

re
V

I.
12

:
C

om
pa

ri
so

n
of

av
er

ag
e

pr
ec

is
io

ns
on

M
ED

11
.S

TI
P

is
us

ed
.



148

 

 
1 200 400 600 800 1000 1200 1400 1582

0

0.5

1

0.03 6.69 13.37 20.06 26.74 33.43 40.11 46.80 52.88

t

 

 
1 100 200 300 400 500 600 700 800 934

0

0.5

1

0.03 3.33 6.67 10.00 13.33 16.67 20.00 23.33 26.67 31.13

t

 

 
1 1000 2000 3000 4000 5000 6000 6599

0

0.5

1

0.03 33.37 66.73 100.10 133.47 166.83 200.20 220.19

t

 

 
1 500 1000 1500 2000 2500 3000 3500 3855

0

0.5

1

0.04 20.00 40.00 60.00 80.00 100.00 120.00 140.00 154.20

t

 

 
1 500 1000 1500 2000 2500 3000 3500 3936

0

0.5

1

0.03 16.67 33.33 50.00 66.67 83.33 100.00 116.67 131.20

t

!

!
" "### $### %### &### '### (### )### *&)'

#

#+'

"

#+#& &"+)" *%+&$ "$'+"% "((+*% $#*+'& $'#+$' $,"+,( %'%+&*

-

Figure VI.13: Recounting by BoWAD on MED11. Sequences of “attempt a
board trick,” “feed an animal,” “wedding ceremony,” “change a vehicle tyre,”
“parade,” and “parkour” (top to bottom) are shown. Snapshots from the most
significant clips of each sequence are also shown.
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Table VI.6: Event list for MED11.

ID Event Name ID Event Name
E001 attempt a board trick E009 get a vehicle unstuck
E002 feed an animal E010 groom an animal
E003 land a fish E011 make a sandwich
E004 wedding ceremony E012 parade
E005 work on a wood project E013 parkour
E006 birthday party E014 repair an appliance
E007 change a vehicle tyre E015 work on a sewing project
E008 flash mob gathering

lengths performed best for different events. For example, while in “parkour”

(E013) the discriminant motion of “rush-jump-climb-land” takes about 5 seconds,

in “land a fish” the distinctive motion of “pull-throw-catch” lasts between 5

and 20 seconds. Combing different attribute sequence lengths achieved the best

performance for all event classes.

However, there were also some significant differences. First, the previ-

ously proposed models of temporal structure, either for low-level features (DMS

and VD-HMM) or attributes (BDS, HMM-FV, CTR), performed worse or, at most,

on par with the holistic attribute vector. This can be justified by the complexity

and variability of the MED events. The BDS was particularly affected by this

problem, performing 1%− 5% worse than the other models of attribute dynam-

ics. Together with Section VI.E.3, these results confirm that, while the BDS is a

better model of dynamics for segmented and aligned video, it has difficulties

for video containing multiple dynamic processes. The fact that the BoWAD and

VLADAD outperform both the holistic attribute vector, and the previous models

of low-level (DMS, VD-HMM) and attribute (HMM-FV, CTR) dynamics shows

that they effectively address this problem.

Second, and more surprising, attribute-based models underperformed the
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Figure VI.14: False positives of recounting on MED11. Examples come from
top 0.1% detections for “attempt a board trick,” “parkour,” “groom an animal,”
and “parade” (top to bottom).

BoVW. This could be due to 1) noisy attribute classification, or 2) limited attribute

vocabulary. Since, as shown in Fig. VI.12, attribute-based approaches handled

some events better than the BoVW we believe that the latter is the main problem.

In any case, since this shows that attribute representations capture information

complementary to that of the BoW, the fusion of attribute models and the BoVW

should lead to the best performance. Table VI.5 shows that this is indeed the case,

as all attribute representations improve on the BoVW when combined with it by

late fusion. In fact, when fused with BoVW and holistic attribute, the VLADAD

achieves 21.84% mAP on MED11 DEV-O. In comparison to other benchmarks,

this is substantially higher than the 15.69% of [158], 16.02% of [87], 15.35% of [56],

and comparable to 22.13% (best results for a single low-level feature) by [173].
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VI.F Experiments: Event Recounting

An interesting property of the BoWAD is that it can be easily combined

with “recounting” procedures to support semantic video segmentation, summa-

rization, and activity identification. This follows from the fact that the contri-

bution of a particular WAD to the score of an activity classifier can be seen as a

measure of the importance of the corresponding pattern of attribute dynamics

for the detection of the target activity. We used the recounting procedure of

[177], quantifying the significance of a video segment (for event detection) by the

weighted sum of the similarities between the corresponding BoWAD histogram

bin and those of the SVM support vectors. More specifically, let x be the BoWAD

histogram and consider a prediction rule based on an additive kernel, e.g., an

SVM with HIK. In this case,

h(x) = ∑i αig(x,z(i)) + c, (VI.17)

where z(i) is the i-th support vector, αi the corresponding SVM weight, c a

constant, and g(x,z(i)) = ∑j gj(xj,z(i)) measures the similarity between zi and x.

The prediction rule then can be rewritten as

h(x) = ∑j,i αigj(xj,z(i)) + c = ∑j hj(xj) + c, (VI.18)

where hj(xj) = ∑i αigj(xj,z(i)) is the contribution of histogram bin xi to the clas-

sification score of the BoWAD histogram. Note that, unlike the holistic attributes

of [177], for which temporal localization intractable, each video segment is asso-

ciated with a WAD in the BoWAD, which corresponds to a short-term pattern of

activity. This allows the quantification of the contribution of the video segment
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to event detection by hj(xj), where xj is the bin of the corresponding WAD. This

enables a precise characterization of the temporal duration and anchor points of

different event evidence.

Four examples are illustrated in Fig. VI.9. In both instances of “clean and

jerk,” the BoWAD discovers the two signature motion of “lifting barbell to chest

level” and “lifting barbell over head.’ Note the variation in temporal location and

duration of these events in the two sequences. On the other hand, the signature

events discovered for “triple jump” and “tennis serve,” are “large step forward

followed by jump,” and “toss ball into the air followed by hit,” respectively.

These results illustrate the robustness of the BoWAD to video uninformative of

the target activity, and its ability to zoom in on the discriminant events. This is

critical for accurate activity recognition from realistic video.

Another important task in TRECVID is recounting of multimedia events,

which we implemented as in Section VI.E.3. Several BoWAD recounting exam-

ples are illustrated in Fig. VI.13, again showing that modeling local signature

behavior is sufficient for accurate detection of complex activities. Specifically,

the BoWAD captures a somersault by a subject riding a skateboard in “attempt

a board trick,” the action of throwing food to dolphins in “feeding an animal,”

the scattered scenes of “dancing,” “cutting cake,” and “bouquet toss” in “wed-

ding ceremony,” the marching crowd on “parade,” and so on. On the other

hand, as shown in Fig. VI.14, recounting results also reveal two major reasons

for detection false positives. The first is the existence of visual content (e.g.,

motion) confusable with that of the target event. The top sequence of Fig. VI.14,

a sequence of “attempt a board trick” where a bike rider performs somersaults

similar to those executed by skateboard riders in the background, is an exam-

ple of this problem. Similarly, the second sequence shows a false positive for
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“parkour,” where several athletes perform plyometric activities or other forms

of training, which involve running, jumping over obstacles, and climbing. The

second reason for false positives is the ambiguity of certain activities, which

lead to inconsistent ground-truth on MED11. For example, the third and fourth

sequences of Fig. VI.14 are labeled as background events for “groom an animal”

and “parade,” respectively. However, the recounting results show that both

sequences are indeed instances of these events.

VI.G Summary and Discussion

In this work, we have proposed a novel representation for video, based

on the modeling of action attribute dynamics. The core of this representation is

the binary dynamic system (BDS), a joint model for attribute appearance and

dynamics. This model was shown to be effective for video sequences that display

a single activity, of homogeneous dynamics. To address the challenges of com-

plex activity recognition, where video sequences can be composed of multiple

atomic events or actions, the BDS was embedded in a BoVW-style representa-

tion, denoted the BoWAD. This is based on a BDS codebook, representing video

as an histogram of assignments to BDSs that characterize temporally localized

attribute dynamics. To enhance discrimination, this representation was extended

into a Fisher-like encoding that characterizes the first order distribution of local

behavior in the BDS manifold. This generalizes the popular VLAD represen-

tation and was denoted the VLADAD. Experiments have shown that the BDS,

the BoWAD, and the VLADAD have state of the art performance for activity

recognition in video whose segments range from precisely segmented and well

aligned to unsegmented and scattered within larger video streams. The ability of
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these representations to capture signature events of different activity classes was

demonstrated through various recounting examples.
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VI.I Appendix

VI.I.1 Weizmann Complex Activity

Synthetic Datasets

The synthetic dataset contains three sets: Syn-4/5/6, Syn20×1 and Syn10×2,

which are generated using the 10 atomic actions (per person) from the original

Weizmann dataset by [51]. Exemplar activities in Syn-4/5/6, Syn20×1, and

Syn10×2 are shown in Table VI.7, Table VI.8, and Table VI.9, respectively. For

Syn20×1, and Syn10×2, two of the 9 instances for an activity (each instance is

assembled from each of the 9 people’s atomic actions).
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Table VI.7: Examples for Syn-4/5/6.

Syn-4 skip-run-walk-wave1

Syn-5 jack-wave1-bend-walk-walk

Syn-6 wave2-run-walk-wave1-jump-wave2

Table VI.8: Examples for Syn20×1.

Ground-truth
Activity

wave1-wave1-wave2-walk-walk-wave1-walk-wave2-
wave2-walk-jack-skip-wave2-bend-bend-jump-

run-skip-jack-wave1

Noisy
Instances1

side-wave2-walk-skip-run-wave1-bend-bend-walk-walk-
wave1-wave1-wave2-walk-walk-wave1-walk-wave2-

wave2-walk-jack-skip-wave2-bend-bend-jump-run-skip-
jack-wave1-side-bend-side-walk-run-side-walk-jack-

bend-walk;

jump-run-wave1-wave1-wave2-walk-walk-wave1-walk-
wave2-wave2-walk-jack-skip-wave2-bend-bend-jump-

run-skip-jack-wave1-wave1-walk-side-jump-side-jump-
jump-run-jack-side-wave1-run-run-skip-wave1-jack-

side-bend;
1 ground-truth activities are composed of actions in red.

VI.I.2 Attribute Definition

Weizmann Complex Activity

Attribute definitions from [101] on Weizmann complex activity are shown

in Table VI.10.

Olympic Sports

Attribute definitions from [101] on Olympic Sports dataset [111] are

shown in Table VI.3.
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Table VI.9: Examples for Syn10×2

Ground-truth
Activity

jack-jump-side-jump-pjump-run-jack-side-bend-wave1;
run-side-side-skip-run-jump-walk-jack-run-skip

Noisy
Instances2

wave2-run-wave1-bend-jump-wave1-skip-side-jack-
jump-side-jump-pjump-run-jack-side-bend-wave1-
walk-wave2-wave2-wave1-side-pjump-wave2-run-
side-side-skip-run-jump-walk-jack-run-skip-jack-

pjump-pjump-pjump-pjump;

jump-jack-jump-side-jump-pjump-run-jack-side-bend-
wave1-jump-side-skip-jack-run-side-bend-jump-pjump-

side-run-side-side-skip-run-jump-walk-jack-run-
skip-side-pjump-wave2-walk-run-pjump-wave2-

wave2-walk;
2 ground-truth activities are composed of actions in red.

VI.I.3 TRECVID MED11

Attribute definitions from [10] on TRECVID MED11 dataset [114] are

shown in Table VI.12.
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Table VI.10: Attributes for Weizmann Actions

attribute be
nd

ja
ck

ju
m

p

pj
um

p

ru
n

si
de

sk
ip

w
al

k

w
av

e1

w
av

e2

arm-hand-alternate-move-forward 0 0 0 0 1 0 0 1 0 0
arm-hand-hang-down-

swing-back-forward
0 0 0 0 0 0 0 1 0 0

arm-hand-swing-move-
back-forward-motion

0 0 1 0 1 0 1 1 0 0

arm-intense-motion 0 1 1 0 0 0 0 0 0 0
arm-shape-fold 0 0 1 0 1 0 1 0 1 1

arm-shape-straight 1 1 1 1 0 1 0 1 1 1
arm-side-open-up-down-motion 0 1 0 0 0 0 0 0 0 1

arm-small-swing-motion-
left-right-up-down

0 1 0 0 0 0 0 0 1 1

arm-synchronized-arm-motion 0 1 1 0 0 0 1 0 0 0
arm-up-motion-over-shoulder 0 1 1 0 0 0 1 0 1 1

chest-level-arm-motion 0 0 0 0 1 0 0 0 0 0
cyclic-motion 0 1 1 1 1 1 1 1 1 1

huge-wave motion-up-down 0 0 1 0 1 1 1 0 0 0
intense-motion 0 1 1 1 1 1 1 0 0 0

leg-alternate-move-forward 0 0 0 0 1 1 0 1 0 0
leg-feet-small-moving-motion 0 0 0 0 0 0 0 1 0 0

leg-intense-motion 0 1 1 1 1 1 1 0 0 0
leg-motion 0 1 1 1 1 1 1 0 0 0

leg-side-stretch-motion 0 1 0 0 0 1 0 0 0 0
leg-two-leg-synchronized-motion 0 1 1 1 0 0 0 0 0 0

leg-up-forward-motion 0 0 1 0 1 0 1 0 0 0
one-arm-motion 1 0 0 0 0 0 1 0 1 0

small-wave-motion-up-down 0 0 0 0 0 0 0 1 0 0
torso-bend-motion 1 0 0 0 0 0 0 0 0 0

torso-vertical-shape-down-
forward-motion

0 0 1 0 1 0 1 0 0 0

torso-vertical-shape-down-motion 0 1 0 1 0 0 0 0 0 0
torso-vertical-shape-up-

forward-motion
0 0 1 0 1 0 1 0 0 0

torso-vertical-shape-up-motion 0 1 0 1 0 0 0 0 0 0
translation-motion 0 0 1 0 1 1 1 1 0 0
two-arms-motion 0 1 1 0 1 0 0 1 0 1
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Table VI.11: Attributes for Olympic Sports

attribute ba
sk

et
ba

ll-
la

yu
p

bo
w

l

cl
ea

n-
je

rk

di
sc

us
-t

hr
ow

di
vi

ng
-p

la
tf

or
m

-1
0m

di
vi

ng
-s

pr
in

g-
3m

ha
m

m
er

-t
hr

ow

hi
gh

-ju
m

p

ja
ve

lin
-t

hr
ow

lo
ng

-ju
m

p

po
le

-v
au

lt

sh
ot

-p
ut

sn
at

ch

te
nn

is
-s

er
ve

tr
ip

le
-ju

m
p

va
ul

t

ball 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0
bend 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0

big-ball 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
big-step 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
crouch 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0

down-motion-in-air 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
fast-run 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1
indoor 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1
jump 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1

jump-forward 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
lift-something 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
local-jump-up 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0

motion-in-the-air 0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1
one-arm-open 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
one-arm-swing 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0

one-hand-
holding-pole 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

open-arm-lift 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
outdoor 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1

raise-arms 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
run 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1

run-in-air 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
slow-run 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
small-ball 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

small-local-jump 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
somersault-in-air 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1
spring-platform 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1

standup 0 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0
throw-away 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0

throw-up 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
track 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1

turn-around 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0
turn-around-with-

two-arms-open 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

two-arms-open 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0
two-arms-swing-

overhead 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

two-hand-
holding-pole 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

up-down-motion-local 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
up-motion-in-air 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1

water 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
with-pat 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
with-pole 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
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In this thesis, we study the problem of modeling temporal structure of

human behavior via dynamics modeling. We propose a temporal structure hier-

archy for human behavior representation that accounts for the distinct properties

of an activity at different different temporal granularity. While primitive motion

residing at the low-level of the hierarchy can be captured by data-driven schemes

such as BoVW representation, we propose to model the temporal structure of

human behavior at midium level on a robust, stable yet general platform that

encodes some semantically meaningful concepts (denoted attributes). This rep-

resentation platform bridges the gap between low-level visual feature and the

high-level logic reasoning, which is also shown to bring in benefits such as better

generalization, knowledge transfer, and so forth. While attributes take care

of abstracting semantic information from low-level visual signal, the dynamic

model focuses on charactering the evolution patterns in this space. To cope with

long-term non-stationarity and intra-class variation for complex behavior at the

high level, we derive several encoding schemes that capture the statistics of

the attribute dynamics in local snippets, instead of precise characterization of

the whole sequence, which is prone to over-fitting due to the sparse nature of

complex event instantiation.

The proposed framework is implemented via a series of novel models, to-

gether with the corresponding technical tools for inference, parameter estimation,

similarity measure, statistics encoding, and so on. In particular, a dynamic model

is proposed to capture the evolution pattern in sequential binary data, denoted

the binary dynamic system (BDS), which is comprised of a binary principal com-

ponent analysis for modeling appearance and Gauss-Markov process to encode

dynamics. A mixture model is further deduced from BDS to capture multiple

evolution patterns in a large data corpus. Accurate and efficient approximate in-
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ference schemes are developed for the posterior based on the variational methods

to handle the intrinsic intractability; and a variational expectation-maximization

algorithm is also proposed for parameter estimation. Relying on these tools, mea-

surements that quantify the similarity or dissimilarity of two binary sequences

are developed from the perspective of control theory, information geometry, and

kernel methods. Encoding schemes for the zeroth and first order statistics of

sequential binary data in the model manifold are also proposed, resulting in the

bag-of-words for attribute dynamics and vector of locally aggregated descriptor

for attribute dynamics.

Empirical study on several challenging tasks of complex human activity

analysis justifies the effectiveness of the proposed solution. This has not only

produced the state-of-the-art results for event detection, but also recounting

results that provides the visual evidence anchored over time in the video for the

prediction, which enables tasks like semantic video segmentation, content based

video summarization, and so forth.
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