

Preliminaries

Machine teaching

• It is assumed that the teacher can access to a much larger example dataset $\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}$

Gradient-based Algorithms for Machine Teaching

Pei Wang

Kabir Nagrecha

SVCL, ECE, University of California, San Diego

- From this dataset, the teacher assembles a small ordered subset $\mathcal{L} = \{ (x_1^l, y_1^l), ..., (x_K^l, y_K^l) \}$
- The student learns on the selected $\mathcal{L} \subset \mathcal{D}$ and tries to achieve the best trade-off between
- •Learning the optimal predictor f^* for \mathcal{D}
- Spending the least amount of effort, usually measured by the cardinality of \mathcal{L}

<u>Sub-optimal student assumption</u>

•The student has limited capacity and memory.

MaxGrad

Optimal student assumption

- Mainly focus on crowd sourcing context;
- •The teaching set must be small;
- Humans are good at few-shot learning scenery;
- free-willing participants rated by their performance;

Iterative machine teaching

• <u>Reference</u>

- gunovic, Gabor Bartok, Amin Karbasi, and Andreas Krause. Near-optimally teaching the crowd sin Mac Aodha, Shihan Su, Yuxin Chen, Pietro Perona, and Yisong Yue. Teaching categories to human learners with
- Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B Smith, James M Rehg, and Le Song. Iterative bine teaching, ICML 2017

Nuno Vasconcelos

	Butterflies	Chinese Char.
RANDOM	65.20	47.05
STRICT	65.00	51.51
EXPLAIN	68.33	65.44
omniIMT*	70.07(18.30)	64.36(19.58)
imiIMT*	72.70(17.63)	64.46(23.72)
bbIMT*	76.09(18.05)	64.37(19.57)
RANDOM*	63.15(18.17)	51.53(24.47)
MaxGrad	80.33(19.76)	81.89 (12.93)